

Bilan de la stratégie de gestion de la pérennité des actifs du Transporteur

Original : 2011-08-01 HQT-2, Document 1 (En liasse)

Stratégie de gestion de la pérennité des actifs du Transporteur Bilan

Table des matières

1. MISE EN CONTEXTE	5
2. DÉMARCHE EN 3 ÉTAPES	5
2.1 ÉVALUATION DES ACTIFS À PARTIR DES CRITÈRES DE PÉRENNITÉ OU D'ANALYSES	S TECHNIQUES
SPÉCIFIQUES (ÉTAPE 1 – 1 ^{ER} VOLET)	6
2.1.1 Critères de pérennité	6
2.1.2 Analyses techniques spécifiques	7
2.1.3 Évaluation de l'état	7
2.2 ÉVALUATION DU RISQUE (ÉTAPE 1 – 2E VOLET)	8
2.2.1 Équipements d'appareillage et ouvrages civils	9
2.2.2 Équipements d'automatismes	15
2.2.3 Composants des lignes aériennes	18
2.3 ÉVALUATION DU NIVEAU D'INVESTISSEMENT (ÉTAPE 1 – 3E VOLET)	19
2.3.1 Équipements avec profil de vieillissement	19
2.3.2 Équipements sans profil de vieillissement	23
2.4 ORIENTATIONS SUR LE CHOIX DES PROJETS À RETENIR (ÉTAPE 2)	23
2.5 DÉTERMINER LES PROJETS ET LES INVESTISSEMENTS À RETENIR (ÉTAPE 3)	24
Cas particulier de l'Île de Montréal	25
Approche par portefeuille	26
3. SUIVI ET POURSUITE DE LA STRATÉGIE	27
3.1 APPRÉCIATION PAR LA RÉGIE DE LA STRATÉGIE	27
3.2 SUIVI DE LA STRATÉGIE	29
3.2.1 Suivi des interventions en fonction du risque	29
3.2.2 Suivi de l'évolution du taux de risque	31
3.2.3 Impact de la Stratégie sur l'indice de continuité	33
3.3 POURSUITE DU DÉVELOPPEMENT ET DU DÉPLOIEMENT DE LA STRATÉGIE	33
3.3.1 Poursuite des travaux en cours	33
3.3.2 Poursuite du déploiement de la Stratégie	33
3.3.3 Amélioration de la Stratégie	34
CONCLUSION	34

Figures

Figure 1 Démarche pour déterminer les investissements requis en Maintien des actifs de tran d'électricité	
Figure 2 Évolution des interventions en Appareillage principal	30
Figure 3 Évolution des interventions en Automatismes	31
Figure 4 Évolution du taux de risque	32
Tableaux	
Tableau 1 Grille d'analyse du risque des équipements d'appareillage (électrique et mécanique) e ouvrages civils (janvier 2008)	t des 9
Tableau 2 Grille d'analyse du risque des équipements d'appareillage (électrique et mécanique) e ouvrages civils (janvier 2009)	t des 10
Tableau 3 Grille d'analyse du risque des équipements d'appareillage (électrique et mécanique) e ouvrages civils (janvier 2010)	t des 10
Tableau 4 Grille d'analyse du risque des équipements d'appareillage (électrique et mécanique) e ouvrages civils (janvier 2011)	t des
Tableau 5 Grille d'analyse du risque des disjoncteurs (janvier 2008)	12
Tableau 6 Grille d'analyse du risque des disjoncteurs (janvier 2009)	12
Tableau 7 Grille d'analyse du risque des disjoncteurs (janvier 2010)	13
Tableau 8 Grille d'analyse du risque des disjoncteurs (janvier 2011)	13
Tableau 9 Grille d'analyse du risque des transformateurs et inductances (janvier 2008)	14
Tableau 10 Grille d'analyse du risque des transformateurs et inductances (janvier 2009)	14
Tableau 11 Grille d'analyse du risque des transformateurs et inductances (janvier 2010)	15
Tableau 12 Grille d'analyse du risque des transformateurs et inductances (janvier 2011)	15
Tableau 13 Grille d'analyse du risque des équipements d'automatismes (janvier 2008)	16
Tableau 14 Grille d'analyse du risque des équipements d'automatismes (janvier 2009)	16
Tableau 15 Grille d'analyse du risque des équipements d'automatismes (janvier 2010)	17
Tableau 16 Grille d'analyse du risque des équipements d'automatismes (janvier 2011)	17
Tableau 17 Grille d'analyse du risque des composants des lignes aériennes (janvier 2010)	18
Tableau 18 Grille d'analyse du risque des composants des lignes aériennes (janvier 2011)	19
Tableau 19 Double approche de gestion de la pérennité des équipements d'appareillage	22
Tableau 20 Coûts des travaux par élément (en milliers de dollars de réalisation)	27

1. Mise en contexte

Depuis 2007, le Transporteur a mis en œuvre une stratégie de gestion de la pérennité des actifs (la « Stratégie ») visant à maintenir la qualité du service de transport, tout en limitant les investissements à un niveau acceptable. La Stratégie repose sur la gestion des risques, en fonction de la probabilité de défaillance des équipements et de l'impact de ces défaillances éventuelles sur le réseau. Elle permet d'identifier les projets prioritaires à la lumière de ce risque et d'utiliser de façon optimale les ressources humaines et financières.

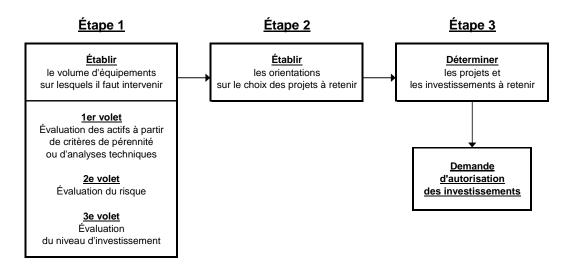
La Stratégie a été décrite de manière explicite dans les demandes R-3641-2007, R-3670-2008 et R-3739-2010 relatives respectivement aux budgets des investissements 2008, 2009 et 2011 pour les projets dont le coût individuel est inférieur à 25 M\$. Elle a également fait l'objet d'une présentation aux représentants de la Régie de l'énergie (la « Régie ») et des intervenants dans le cadre de la demande R-3606-2006, lors d'une séance de travail tenue le 9 mai 2007.

La Régie a demandé au Transporteur, dans sa décision D-2009-013, de faire le point sur le résultat de l'application de la Stratégie en 2011.

Afin de répondre à cette demande, le Transporteur fournit ce bilan en faisant ressortir les raffinements qui ont été apportés à la Stratégie depuis sa présentation dans le cadre de la demande du Transporteur relative au budget des investissements 2008. Dans le but de faciliter l'exercice de ce bilan, le Transporteur rappelle les grandes lignes de la Stratégie.

Le Transporteur répond également aux autres demandes de la Régie visant divers aspects de la Stratégie et découlant de ses décisions relatives respectivement aux budgets des investissements 2008, 2009 et 2010 tel que cela est présenté à la pièce HQT-2, Document 1.1.

Une ligne verticale en marge de droite du texte indique les raffinements apportés à la Stratégie et les réponses à ces demandes de la Régie.


2. Démarche en 3 étapes

Le Transporteur rappelle qu'il utilise une démarche en trois étapes pour déterminer les investissements requis et les projets à retenir afin d'assurer la pérennité de ses actifs de transport d'électricité. Cette démarche a été décrite en détail dans sa demande R-3670-2008, à la pièce HQT-1, Document 1.2. La Régie, dans sa décision D-2009-013 (p.27), a considéré que la démarche optimisée du Transporteur permet d'intégrer l'évaluation du niveau de risque par l'utilisation des grilles d'analyse par famille d'actifs et

de prioriser les interventions requises. Le Transporteur suit actuellement les trois étapes de cette démarche qui sont illustrées à la figure 1 suivante :

Figure 1 Démarche pour déterminer les investissements requis en Maintien des actifs de transport d'électricité

Le Transporteur rappelle que les activités qui sont effectuées aux étapes 1 et 2 sont liées aux produits de la Stratégie. L'étape 3 consiste à appliquer les produits de la Stratégie afin de déterminer les projets et les investissements à retenir pour une période donnée. Ces 3 étapes seront abordées dans les sections qui suivent.

2.1 Évaluation des actifs à partir des critères de pérennité ou d'analyses techniques spécifiques (étape 1 – 1^{er} volet)

L'évaluation des actifs est effectuée à partir de critères de pérennité pour certains actifs et d'analyses techniques spécifiques pour d'autres actifs. Cette évaluation est complétée par l'évaluation locale de l'état des équipements.

2.1.1 Critères de pérennité

La gestion de la pérennité des différents équipements se fonde sur un ensemble de critères permettant d'évaluer leur état et leur durée de vie restante. Le Transporteur a complété l'élaboration des critères de pérennité pour les disjoncteurs, les sectionneurs, les transformateurs de puissance et inductances shunt, les équipements d'automatismes et les lignes. Ces critères de pérennité ainsi élaborés ont été présentés et décrits à la pièce HQT-2, Document 1 de la demande R-3670-2008.

Le Transporteur a par la suite complété en décembre 2009 l'élaboration des critères de pérennité pour les transformateurs de mesure et les autres équipements d'appareillage (batteries de condensateurs, jeux de barres, compresseurs d'air, groupes électrogènes, parafoudres, etc.). Ces critères de pérennité ont aussi été présentés et décrits à la pièce HQT-2, Document 1 de la demande R-3739-2010. Le Transporteur souligne que ces critères feront l'objet de révisions périodiques.

Le Transporteur a complété pour ces mêmes actifs les listes d'équipements devant faire l'objet d'une intervention, évalués selon les critères de pérennité, par ordre de priorité.

Par ailleurs, le Transporteur poursuit le développement des critères de pérennité des ouvrages civils. L'évaluation de ces ouvrages civils est actuellement effectuée à partir d'analyses techniques spécifiques.

2.1.2 Analyses techniques spécifiques

Compte tenu de leur petit nombre, la pérennité des équipements de compensation (synchrone et statique) et des convertisseurs est étudiée au cas le cas, en fonction de l'évolution et des besoins particuliers du réseau sans utiliser des critères de pérennité globaux analogues à ceux appliqués aux équipements précédents.

2.1.3 Évaluation de l'état

Le Transporteur rappelle que les critères de pérennité permettent d'évaluer la performance et l'état des équipements et d'établir un diagnostic technique pour l'ensemble des équipements. Toutefois, l'évaluation locale des équipements permet de tenir compte de certains paramètres qui échappent aux analyses globales et d'inclure les effets de certaines particularités spécifiques locales. Cette évaluation locale est prise en considération dans le cadre de l'étape 3 de la démarche, au moment du choix des projets par les gestionnaires des unités territoriales. Le Transporteur entend élaborer des paramètres d'évaluation des équipements afin d'uniformiser cette évaluation locale de la manière suivante :

- a. Un groupe de travail d'experts du Transporteur en ouvrages civils a élaboré en 2009 des critères d'état des ouvrages civils qui font actuellement l'objet d'une évaluation sur le terrain. La méthodologie du Transporteur s'inspire de celle de la firme Hatch Energy qui est basée sur une approche visuelle et une analyse;
- b. Des groupes de travail d'experts du Transporteur en appareillage électrique développent actuellement des critères d'état pour les disjoncteurs et les transformateurs de puissance ;

c. Le Transporteur évaluera la mise en place d'un système de documentation pour archiver les données sur l'état de ces équipements à la suite de l'élaboration des critères d'état des ouvrages civils, des disjoncteurs et des transformateurs de puissance.

Au terme du premier volet de l'étape 1, le Transporteur dispose des listes et informations sur les équipements préoccupants résultant d'une part de l'application des critères de pérennité pour certains actifs et d'autre part d'analyses techniques spécifiques pour d'autres actifs.

2.2 Évaluation du risque (étape 1 – 2e volet)

L'évaluation du risque vise une approche améliorée de la gestion de la pérennité en déterminant le niveau de risque des différents équipements.

L'outil d'évaluation du risque, dont le résultat est une grille de risque, a été bonifié et présenté au dossier R-3670-2008. Le Transporteur a fait évaluer cet outil d'analyse par le Centre interuniversitaire de recherche en analyse des organisations CIRANO qui a proposé au Transporteur des améliorations possibles. Plusieurs d'entre elles ont été retenues et intégrées à l'outil, en plus des améliorations initiées par le Transporteur :

- Inclusion de tous les équipements dans la grille, c'est-à-dire l'élimination du risque zéro (0);
- Arrondissement du résultat final (en nombre réel) de la cote d'impact ou de la cote de probabilité à l'entier le plus proche;
- Déploiement de l'axe des probabilités harmonisé avec les probabilités réelles historiques de fin de vie des équipements, correspondant aux courbes de vieillissement du taux de défaillance de fin de vie des équipements;
- Introduction d'un indicateur « Taux de risque » permettant de quantifier le risque des équipements tout en tenant compte de la répartition de ceux-ci dans la grille de risque.

Les équipements de réseau qui ont été évalués dans la grille de risque correspondent à 90 % de la valeur d'actif du Transporteur et se répartissent comme suit : appareillage (électrique et mécanique) et ouvrages civils, équipements d'automatismes et composants des lignes aériennes.

Les autres équipements qui ne sont pas évalués dans la grille de risque représentent 10 % de la valeur d'actif du Transporteur et sont évalués au cas le cas, compte tenu de leur faible nombre. Ils se répartissent comme suit : compensateurs synchrones et statiques, convertisseurs et lignes souterraines.

Le Transporteur a présenté deux grilles de risque distinctes : l'une pour les équipements d'appareillage et les équipements d'automatismes au dossier R-3670-2008 et l'autre pour les composants des lignes aériennes au dossier R-3739-2010. Quoique visuellement semblables, ces grilles obéissent à des règles d'élaboration distinctes qui ont été présentées pour chacune d'entre elles respectivement. Les résultats des grilles de risque de ces actifs sont présentés pour les équipements d'appareillage, les équipements d'automatismes et les composants des lignes aériennes dans les tableaux qui suivent.

2.2.1 Équipements d'appareillage et ouvrages civils

Les actifs visés regroupent à la fois les équipements d'appareillage (disjoncteurs, sectionneurs, transformateurs et inductances, équipements de compensation et autres équipements¹) et les ouvrages civils. Le Transporteur rappelle que les équipements d'appareillage et les ouvrages civils sont étroitement liés et sont par conséquent généralement gérés ensemble. Le Transporteur a évalué et classé ces équipements dans une grille de risque qu'il présente aux tableaux 1 à 4 pour chaque année depuis l'implantation de la Stratégie, soit de 2008 à 2011.

Équipements d'appareillage et ouvrages civils Tableau 1 Grille d'analyse du risque des équipements d'appareillage (électrique et mécanique) et des ouvrages civils (janvier 2008) v2007-2008 / v05,1b Nombre d'équipements par niveau de risque Équip. Vs Risque Nombre de Équip id Probabilité Total 69 13 254 1 183 469 85 466 308 260 287 3 130 0,2% 1 000 3 124 1 431 1 030 2 342 5 600 2 303 1 380 504 203 424 15 591 4 823 4 781 412 614 7 584 2 195 675 7 641 4 936 1 505 768 233 25 703 Moyen 6 553 8 002 2 321 347 208 499 4 284 5 064 532 700 297 354 69 168 79,0% 11 179 1 957 Équip. Équip. à risque à risque

¹ Les autres équipements regroupent les jeux de barre, les systèmes d'air, les groupes électrogènes, les chargeurs, les accumulateurs, les parafoudres, etc.

Note: Tableau redressé pour fins de comparaison selon la référence R-3670-2008, HQT-2, Document 1, tableau 3, page 59 qui incluait les équipements d'automatismes

Tableau 2 Grille d'analyse du risque des équipements d'appareillage (électrique et mécanique) et des ouvrages civils (janvier 2009)

		ı	Nombre d'é	quipement	ts par nivea	au de risqu	ie				v2008	-2009 / v06.3
Nombre de Équip id	Probabilité										Équip. \	s risque
Impact	1	2	3	4	5	6	7	8	9	Total	Nb	%
9	31	58	31	46	27	15	57		7	272		
8	1 074	1 008	568	387	234	424	110	24	46	3 875	Élevé	Élevé
7	1 391	3 352	1 570	1 337	976	761	497	157	321	10 362	455	0,4%
6	2 362	5 223	2 370	1 274	1 204	616	461	203	347	14 060	Fort	Fort
5	5 272	8 115	4 394	2 611	2 964	1 478	534	181	739	26 288	4 156	3,5%
4	8 284	8 935	5 193	2 639	1 440	878	356	121	1 006	28 852	Moyen	Moyen
3	5 843	6 852	2 406	1 774	936	792	265	129	745	19 742	20 536	17,3%
2	4 361	5 527	618	691	530	258	127	86	247	12 445	Faible	Faible
1	1 214	1 227	103	61	30	48	11	9	34	2 737	93 486	78,8%
Total	29 832	40 297	17 253	10 820	8 341	5 270	2 418	910	3 492	118 633	Équip.	Équip.
								Taux d	le risque :	6,4	à risque 25 147	à risque 21,2%

Référence: R-3707-2009, HQT-1, Document 1, tableau 9, page 25

Tableau 3 Grille d'analyse du risque des équipements d'appareillage (électrique et mécanique) et des ouvrages civils (janvier 2010)

	Nombre d'équipements par niveau de risque													
Nombre de Équip id	Probabilité										Équip. \	/s risque		
Impact	1	2	3	4	5	6	7	8	9	Total	Nb	%		
9	26	59	37	44	30	12	3	40	6	257				
8	1 147	977	463	386	304	365	173	18	41	3 874	Élevé	Élevé		
7	1 599	3 048	1 600	1 291	1 013	659	592	217	328	10 347	436	0,4%		
6	2 498	4 860	2 230	1 229	1 154	629	506	258	405	13 769	Fort	Fort		
5	5 665	7 870	4 204	2 830	2 636	1 850	584	268	745	26 652	4 534	3,8%		
4	8 712	8 906	5 463	2 740	1 629	978	349	134	1 098	30 009	Moyen	Moyen		
3	6 187	6 564	2 759	1 432	1 187	719	411	174	791	20 224	21 310	17,7%		
2	4 468	5 473	703	609	525	318	124	106	282	12 608	Faible	Faible		
1	1 120	1 237	86	73	34	51	15	8	34	2 658	94 118	78,2%		
Total	31 422	38 994	17 545	10 634	8 512	5 581	2 757	1 223	3 730	120 398	Équip.	Équip.		
								Taux de	e risque :	6,6	à risque 26 280	à risque 21,8%		

Référence: R-3739-2010, HQT-1, Document 1, tableau 10, page 25

Tableau 4 Grille d'analyse du risque des équipements d'appareillage (électrique et mécanique) et des ouvrages civils (janvier 2011)

révisée 2011/0	ré				9	au de risqu	s par nive	quipement	Nombre d'é	-		
p. vs Risque	Équip.										Probabilité	Nombre de Équip id
%	Nb	Total	9	8	7	6	5	4	3	2	1	Impact
		228	6	29	3	12	36	49	25	52	16	9
Élevé	Élevé	3 876	33	71	286	164	348	487	359	991	1 137	8
0,4%	455	10 424	313	215	637	593	1 231	1 442	1 710	2 553	1 730	7
Fort	Fort	13 843	338	313	491	649	1 297	1 220	2 395	4 674	2 466	6
3,7%	4 496	27 132	763	300	541	2 718	2 061	2 987	4 094	8 399	5 269	5
n Moye	Moyen	30 470	868	272	388	1 155	1 680	3 276	5 317	10 577	6 937	4
18,6%	22 753	20 563	793	253	568	686	1 177	1 472	2 753	7 370	5 491	3
Faible	Faible	12 999	307	132	134	286	539	539	752	6 065	4 245	2
77,3%	94 587	2 756	35	13	19	50	32	80	105	1 394	1 028	1
. Équip	Équip.	122 291	3 456	1 598	3 067	6 313	8 401	11 552	17 510	42 075	28 319	Total
e à risqu	à risque				_							
22,7%	27 704	6,9	le risque :	Taux d								

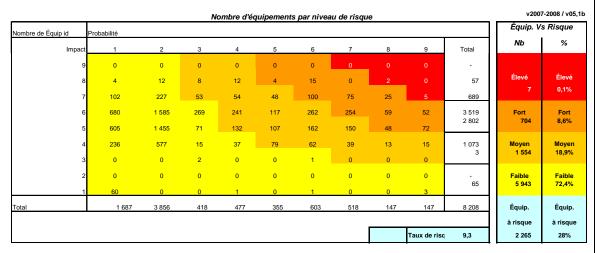
Référence: R-3778-2011, HQT-1, Document 1, tableau 12, page 24

Le Transporteur constate que les grilles de risque des équipements d'appareillage (électrique et mécanique) et des ouvrages civils donnent des pourcentages d'équipements à risque (c'est-à-dire les équipements à risque élevé, fort et moyen) comparables d'une année à l'autre. La légère hausse observée du pourcentage d'équipements à risque passant de 21 % en 2008 à 22,7 % en 2011 suit les prévisions du Transporteur. Celui-ci avait indiqué dans ses dossiers antérieurs que le risque continuerait à augmenter pour se stabiliser à long terme.

Les équipements à risque sont principalement des disjoncteurs à gros volume d'huile, des disjoncteurs pneumatiques, des transformateurs de mesure, des parafoudres et dans une moindre mesure des jeux de barres et des compresseurs.

Le nombre et le pourcentage d'équipements à risque peut varier d'une année à l'autre, suivant les interventions réalisées annuellement et le vieillissement croissant des équipements amenant ainsi un déplacement des équipements sur l'axe de probabilité. Le Transporteur cible des interventions en pérennité sur les équipements à risque qui constituent entre 65 à 70 % de son plan d'interventions dans une année.

Le Transporteur porte une attention particulière aux équipements à risque élevé qui ne font pas l'objet d'interventions à court terme par la mise en place d'actions de surveillance et d'entretien.


De plus, la hausse observée du nombre total d'équipements d'appareillage s'explique par l'ajout de nouveaux équipements et de nouveaux postes lié à la croissance des besoins de la clientèle.

Par ailleurs, les informations présentées aux tableaux 5 à 12 visent à répondre à la demande de la Régie dans sa décision D-2010-056 (p.14) de comparer les grilles de risque en début de processus à celles qui sont maintenant disponibles pour le matériel majeur, comme les disjoncteurs, les transformateurs et les inductances. Le Transporteur présente ci-dessous les grilles de risque du matériel majeur entre janvier 2008 et janvier 2011.

Disjoncteurs

Tableau 5 Grille d'analyse du risque des disjoncteurs (janvier 2008)

Référence: R-3670-2008, HQT-2, Document 1, tableau 5, page 62

Tableau 6 Grille d'analyse du risque des disjoncteurs (janvier 2009)

-2009 / v06.3	v2008-	Nombre d'équipements par niveau de risque													
/s risque	Équip. V										Probabilité	Nombre de Équip id			
%	Nb	Total	9	8	7	6	5	4	3	2	1	Impact			
		0	0		0	0	0	0	0	0	0	9			
Élevé	Élevé	63	2	0	5	10	3	21	5	13	4	8			
0,1%	5	900	3	25	117	74	71	98	87	292	133	7			
Fort	Fort	3 087	56	94	232	193	139	190	161	1 382	640	6			
9,4%	779	3 239	82	81	181	155	123	118	95	1 799	605	5			
Moyen	Moyen	998	10	6	36	65	52	31	7	550	241	4			
18,7%	1 550	2	0	0	0	1	0	0	1	0	0	3			
Faible	Faible	0	0	0	0	0	0	0	0	0	0	2			
71,8%	5 955	0	0	0	0	0	0	0	0	0	0	1			
Équip.	Équip.	8 289	153	206	571	498	388	458	356	4 036	1 623	Total			
à risque 28,2%	à risque 2 334	9,6	risque :	Taux de i											

Tableau 7 Grille d'analyse du risque des disjoncteurs (janvier 2010)

Nombre d'équipements par niveau de risque Nombre de Équip id Probabilité 113 308 103 143 3 095 1 835 189 99 1 030 1 662 4 120 274 573 490 Taux de risque : 9,7

v2009	-2010 / v07.1
Équip. V	/s risque
Nb	%
Élevé	Élevé
5	0,1%
Fort	Fort
845	10,1%
Moyen	Moyen
1 481	17,7%
Faible	Faible
6 028	72,1%
Équip.	Équip.
à risque	à risque
2 331	27,9%

Tableau 8 Grille d'analyse du risque des disjoncteurs (janvier 2011)

lombre de Équip id	Probabilité									
Impact	1	2	3	4	5	6	7	8	9	Tota
9	0	0	0	0	0	0			0	
8	4	10	4	17	4	0	11		1	5
7	152	311	47	106	76	51	100	27	25	89
6	710	1 349	111	248	140	115	168	201	50	3 09
5	675	1 835	106	93	138	118	157	118	86	3 32
4	256	620	10	14	52	43	50	14	12	1 07
3	0	0	0	1	0	1	0	0	0	
2	0	0	0	0	0	0	0	0	0	
1	0	0	0	0	0	0	0	0	0	
Total	1 797	4 125	278	479	410	328	486	360	174	8 43

rév	isée 2011/04/04
Équip. v	s Risque
Nb	%
Élevé	Élevé
26	0,3%
Fort	Fort
816	9,7%
Moyen	Moyen
1 430	16,9%
Faible	Faible
6 165	73,1%
Équip.	Équip.
à risque	à risque
2 272	26,9%

Les disjoncteurs à risque sont principalement les disjoncteurs réenclencheurs, les disjoncteurs à gros volume d'huile et les disjoncteurs pneumatiques. Le pourcentage des disjoncteurs à risque demeure stable et se situe autour de 27 % - 28 %. Le taux de risque des disjoncteurs aurait augmenté si le Transporteur n'avait pas réalisé des interventions sur ces équipements.

Transformateurs et inductances

Tableau 9 Grille d'analyse du risque des transformateurs et inductances (janvier 2008)

	Nombre d'équipements par niveau de risque													
Nombre de Équip id	Probabilité										Équip. V	s Risque		
Impact	1	2	3	4	5	6	7	8	9	Total	Nb	%		
9	29	69	12	67	6	0	63		5	253				
8	1 173	451	452	293	253	270	85	19	47	3 043	Élevé	Élevé		
7	827	2 752	1 232	844	506	629	279	86	130	7 285	266	1,0%		
6	1 120	3 303	904	886	748	380	228	104	307	7 980	Fort	Fort		
5	779	1 837	260	198	338	142	117	66	236	3 973	2 549	9,2%		
4	1 804	1 027	126	111	121	77	56	16	248	3 586	Moyen	Moyen		
3	1 077	7	50	3	0	15	4	0	27	1 183	6 764	24,4%		
2	80	0	0	0	0	0	0	0	0	80	Faible	Faible		
1	225	27	17	9	0	4	1	1	9	293	18 097	65,4%		
otal	7 114	9 473	3 053	2 411	1 972	1 517	833	294	1 009	27 676	Équip.	Équip.		
											à risque	à risque		
									Taux de risc	11,5	9 579	35%		

Référence : R-3670-2008, HQT-2, Document 1, tableau 7, page 63

Tableau 10 Grille d'analyse du risque des transformateurs et inductances (janvier 2009)

v2008-2009 / v0		Nombre d'équipements par niveau de risque											
Équip. Vs risque										Probabilité	Nombre de Équip id		
Nb %	Total	9	8	7	6	5	4	3	2	1	Impact		
	271	7		57	15	27	46	30	58	31	9		
Élevé Élevé	3 745	40	20	100	412	222	358	555	978	1 060	8		
429 1,5%	8 828	305	121	366	644	824	1 150	1 339	2 896	1 183	7		
Fort Fort	6 474	230	69	193	265	681	567	789	2 704	976	6		
2 684 9,6%	4 645	220	65	157	164	324	243	268	2 053	1 151	5		
Moyen Moyer	2 853	283	9	66	39	36	87	101	584	1 648	4		
7 181 25,7%	1 138	30	0	15	3	1	50	20	14	1 005	3		
Faible Faible	30	0	0	0	0	0	0	0	0	30	2		
7 690 63,2%	o	0	0	0	0	0	0	0	0	0	1		
Équip. Équip risque à risqu	27 984	1 115	284	954	1 542	2 115	2 501	3 102	9 287	7 084	Total		
10 294 36,8%	12,5	risque :	Taux de										

Tableau 11 Grille d'analyse du risque des transformateurs et inductances (janvier 2010)

Nombre d'équipements par niveau de risque Nombre de Équip id Probabilité 59 26 256 1 363 2 609 1 414 160 8 872 2 014 306 100 4 782 965 7 688 8 809 3 115 2 401 2 223 1 510 1 079 28 45 Taux de risque : 12,8

v2009-2010 / v07.1							
Équip. Vs risque							
Nb	%						
Élevé	Élevé						
404	1,4%						
Fort	Fort						
2 953	10,4%						
Moyen	Moyen						
7 244	25,5%						
Faible	Faible						
17 851	62,7%						
Équip. à risque 10 601	Équip. à risque 37,3%						

Tableau 12 Grille d'analyse du risque des transformateurs et inductances (janvier 2011)

Nombre de Équip id	Probabilité									
Impact	1	2	3	4	5	6	7	8	9	Tota
9	16	52	25	48	36	12		29	6	227
8	1 124	969	340	463	337	157	275	66	28	3 759
7	1 503	2 111	1 522	1 267	1 105	468	527	185	268	8 956
6	1 135	2 473	908	473	861	313	268	78	205	6 714
5	945	2 324	352	305	287	294	168	74	218	4 967
4	682	1 555	139	131	93	88	109	68	119	2 984
3	444	502	48	76	49	15	9	2	17	1 162
2	62	18	0	0	0	0	0	0	0	80
1	0	0	0	0	0	0	0	0	0	C
Total	5 911	10 004	3 334	2 763	2 768	1 347	1 359	502	861	28 849
Taux de risque : 13,2									13,2	

révisée 2011/04/04 Équip. vs Risque Nb Élevé Élevé Fort 2 840 9,8% Moyen Moyen Faible Faible 17 633 61,1% Équip. Équip. à risque à risque

Les transformateurs à risque sont principalement les transformateurs de mesure. Le Transporteur observe une légère hausse du pourcentage de transformateurs et inductances à risque qui passe de 35 % en janvier 2008 à 38,9 % en janvier 2011. Le taux de risque des transformateurs et inductances suit les prévisions du Transporteur et aurait augmenté si le Transporteur n'avait pas réalisé des interventions sur ces équipements.

2.2.2 Équipements d'automatismes

Le Transporteur a évalué et classé les équipements d'automatismes dans une grille du risque. Les informations présentées aux tableaux 13 à 16 visent à répondre à la

demande de la Régie dans sa décision D-2010-056 (p.14) concernant la comparaison des grilles de risque en début de processus à celles qui sont maintenant disponibles pour les équipements d'automatismes.

Tableau 13 Grille d'analyse du risque des équipements d'automatismes (janvier 2008)

	v2007	7-2008 / v05,1k												
lombre de Équip id	Probabilité	Probabilité												
Impac		2	3	4	5	6	7	8	9	Total	Nb	%		
9	9 0	0	0	0	0	0	0		0	-				
8	в 0	0	0	0	0	0	0	0	0	-	Élevé	Élevé		
7	7 1 889	0	143	386	990	117	106	18	0	3 649	-	0,0%		
•	7 130	0	427	1 533	2 675	307	271	66	15	12 424	Fort	Fort		
	5 675	0	350	1 356	1 331	359	168	37	3	9 279	633	1,5%		
4	2 552	0	189	506	408	400	49	39	0	4 143	Moyen	Moyen		
5	3 328	0	432	1 116	167	5	103	27	0	5 178	10 274	24,7%		
2	2 895	0	507	982	228	1	142	1	0	4 756 2 197	Faible 30 719	Faible		
	1 255	0	219	476	126	4	117	0	0	2 197	30 719	73,8%		
otal	24 724	-	2 267	6 355	5 925	1 193	956	188	18	41 626	Équip.	Équip.		
											à risque	à risque		
									Taux de risc	7,3	10 907	26%		

Tableau redressé pour fins de comparaison selon la référence R-3670-2008, HQT-2, Document 1, tableau 10, page 65 qui incluait les chargeurs et les batteries 125 Vcc

Tableau 14 Grille d'analyse du risque des équipements d'automatismes (janvier 2009)

Nombre d'équipements par niveau de risque												-2009 / v06.3
Nombre de Équip id	Probabilité										Équip. V	's risque
Impact	1	2	3	4	5	6	7	8	9	Total	Nb	%
9	0	0	0	0	0	0	0		0	0		
8	0	o	0	0	0	0	0	0	0	0	Élevé	Élevé
7	1 459	5	111	2 357	728	82	0	0	0	4 742	0	0,0%
6	2 813	49	411	6 218	1 923	238	4	14	0	11 670	Fort	Fort
5	3 608	1	488	4 758	1 932	86	o	3	0	10 876	103	0,2%
4	1 135	3	339	1 001	627	144	13	0	0	3 262	Moyen	Moyen
3	1 049	0	1 099	856	1 310	187	63	0	0	4 564	19 198	46,2%
2	820	0	1 224	970	1 692	150	129	0	0	4 985	Faible	Faible
1	294	0	213	217	591	60	56	0	0	1 431	22 229	53,5%
Total	11 178	58	3 885	16 377	8 803	947	265	17	0	41 530	Équip.	Équip.
		- -			<u>-</u>	<u> </u>		Taux de r	isque :	11,5	à risque 19 301	à risque 46,5%

Référence: R-3707-2009, HQT-1, Document 1, tableau 11, page 30

Tableau 15 Grille d'analyse du risque des équipements d'automatismes (janvier 2010)

Nombre d'équipements par niveau de risque Nombre de Équip id Probabilité Tota 0 0 0 0 1 492 2 101 760 170 84 4 65 11 588 3 754 147 5 337 1 235 191 10 844 1 211 1 766 1 078 236 283 4 574 1 126 289 4 901 1 426 12 177 58 4 818 17 407 4 601 1 662 524 41 26 Taux de risque : 11,6

v2009-2010 / v07.1

Équip. Vs risque

Nb %

Élevé 0,0%

Fort Fort 519 1,3%

Moyen Moyen 18 489 44,8%

Faible Faible 22 256 53,9%

Équip. à risque 19 008 46,1%

Référence: R-3739-2010, HQT-1, Document 1, tableau 12, page 30

Tableau 16 Grille d'analyse du risque des équipements d'automatismes (janvier 2011)

Nombre d'équipements par niveau de risque Nombre de Équip id Probabilité Tota 0 0 0 1 358 4 718 2 724 4 636 11 558 157 3 270 525 228 15 147 10 80 1 165 429 1 077 178 3 247 4 527 1 124 4 590 973 1 978 196 266 0 53 113 1 378 Tota 11 113 4 981 14 719 7 586 1 835 437 145 40 825 Taux de risque : 12,8

révisée 2011/04/04 Équip. vs Risque Élevé Élevé 0,0% Fort Fort Moyen Moyen 19 493 47,7% Faible Faible 20 876 51,1% Équip. Équip. à risque à risque 19 949 48,9%

Référence : R-3778-2011, HQT-1, Document 1, tableau 14, page 27

Le Transporteur souligne que ces grilles de risque tiennent compte de l'évaluation des équipements d'automatismes réalisée périodiquement par les experts du Transporteur.

En 2009, cette évaluation a haussé la probabilité de défaillance de fin de vie de plusieurs familles d'équipements d'automatismes et a permis de tenir compte de certains paramètres qui échappent aux analyses globales et d'inclure les effets de certaines particularités spécifiques des équipements d'automatismes, entraînant ainsi une hausse marquée des équipements à risque entre janvier 2008 et janvier 2009. Le pourcentage

d'équipements à risque est passé en effet de 26 % en 2008 à 46,5 % en 2009. Le Transporteur constate que les grilles de risque des équipements d'automatismes donnent des pourcentages d'équipements à risque comparables pour les années 2009, 2010 et 2011 quoique légèrement à la hausse en 2011.

Le nombre et le pourcentage d'équipements à risque peut varier d'une année à l'autre suivant les interventions réalisées annuellement. Le Transporteur rappelle que les interventions en automatismes sont liées en partie aux autres projets du réseau de transport d'électricité, notamment les projets de la clientèle et les projets touchant une grande partie des équipements d'appareillage d'un poste. Le Transporteur cible des interventions en pérennité sur les équipements à risque qui constituent entre 65 à 70 % de son plan d'interventions dans une année.

Par ailleurs, la diminution observée du nombre total d'équipements d'automatismes s'explique par le remplacement de plusieurs systèmes électromécaniques et statiques par des systèmes numériques intégrant plusieurs fonctions automatisées.

2.2.3 Composants des lignes aériennes

Le Transporteur a évalué et classé les composants des lignes aériennes dans une grille du risque qu'il a complétée en 2009 et présentée de façon détaillée à la pièce HQT-2, Document 1 de la demande R-3739-2010. Il présente ces grilles de risque aux tableaux 17 et 18 pour les années 2010 et 2011

Tableau 17 Grille d'analyse du risque des composants des lignes aériennes (janvier 2010)

Nombre d'équipements par niveau de risque												-2010 / v07
Somme de Nb équip	Probabilité										Équip. \	/s risque
Impact	1	2	3	4	5	6	7	8	9	Total	Nb	%
9	0	0	2	0	0	4	0		0	6		
8	41	449	416	648	94	65	47	0	1	1 761	Élevé	Élevé
7	755	6 376	10 056	7 527	3 122	1 029	409	249	17	29 540	18	0,0%
6	6 094	24 540	29 172	19 607	10 754	5 673	3 406	1 018	621	100 885	Fort	Fort
5	10 017	63 808	49 691	34 580	23 030	13 788	5 136	1 401	663	202 114	9 006	1,5%
4	7 302	48 984	38 687	30 978	25 930	11 835	4 707	1 084	299	169 806	Moyen	Moyen
3	909	21 515	18 159	14 664	8 397	5 814	1 885	396	57	71 796	180 532	30,8%
2	16	1 812	2 935	2 739	1 016	975	413	109	11	10 026	Faible	Faible
1	0	0	0	0	0	0	0	0	0	0	396 378	67,6%
Total	25 134	167 484	149 118	110 743	72 343	39 183	16 003	4 257	1 669	585 934	Équip.	Équip.
								Taux d	e risque :	8,3	à risque 189 556	à risque 32,4%

Référence: R-3739-2010, HQT-1, Document 1, tableau 15, page 35

Tableau 18 Grille d'analyse du risque des composants des lignes aériennes (janvier 2011)

Nombre d'équipements par niveau de risque version du 2011-04-18 Équip. vs risque Nombre de Équip id Probabilité % Tota 0 0 0 0 0 0 61 Élevé 0.0% 681 5 876 10 056 7 548 1 119 497 2 981 229 29 014 99 858 10 011 1.7% 9 913 63 636 50 089 22 572 14 480 5 686 1 891 201 777 178 665 30.4% 21 378 13 111 8 881 6 015 1 807 1 936 19 650 73 132 10 260 398 598 67.9% 154 728 103 601 71 233 41 937 16 687 587 30 Équip. Équip. à risque Taux de risque : 8,3 188 703 32.1%

Référence: R-3778-2011, HQT-1, Document 1, tableau 16, page 31

Le Transporteur constate que les grilles de risque des composants des lignes aériennes donnent des pourcentages d'équipements à risque comparables d'une année à l'autre se situant autour de 32 %. La hausse observée du nombre total d'équipements s'explique par l'ajout de nouveaux composants et de nouvelles lignes lié à la croissance des besoins de la clientèle.

Les composants des lignes aériennes à risque sont principalement des isolateurs, des poteaux et des traverses de bois et les composants de certaines lignes vétustes ciblées.

Au terme du deuxième volet de l'étape 1, le Transporteur dispose, avec les listes et informations sur les équipements préoccupants ainsi que les grilles de risque, des outils nécessaires pour déterminer les meilleurs équipements à cibler.

2.3 Évaluation du niveau d'investissement (étape 1 – 3e volet)

Le Transporteur distingue deux types d'équipements, soit les équipements ayant un profil de vieillissement pour lequel l'outil de simulation est utilisé pour évaluer le niveau d'investissement et les équipements sans profil de vieillissement.

2.3.1 Équipements avec profil de vieillissement

Le Transporteur rappelle que l'outil de simulation, qui utilise les courbes de vieillissement, n'est utilisé que pour les équipements ayant un profil de vieillissement, tels les équipements d'appareillage (électrique et mécanique) et les composants des lignes aériennes de transport.

Ces courbes de vieillissement correspondent aux courbes (en baignoire) du taux de défaillance de fin de vie des équipements. Seuls quelques types d'équipements d'appareillage peu nombreux comme par exemple les groupes électrogènes ne possèdent pas de profil de vieillissement et l'évaluation du niveau d'investissement est effectuée à partir d'analyses spécifiques. Aux fins de la simulation, des courbes du taux de défaillance ont été tracées et raffinées par type d'équipements ayant un profil similaire de vieillissement.

Le Transporteur a complété les courbes du taux de défaillance des composants des lignes aériennes en 2009, et travaille actuellement au développement de profils similaires de vieillissement pour les ouvrages civils.

Le Transporteur rappelle que l'outil de simulation tient compte des ressources requises pour assurer la pérennité des actifs. Ainsi, l'outil de simulation est alimenté par des choix d'interventions (remplacement ou remise à neuf) en fonction, s'il y a lieu, des résultats d'analyses technico-économiques spécifiques aux différents équipements tel que cela est présenté à la section 6.

Cette prise en considération peut, par exemple, entraîner le devancement ou le report des interventions afin d'éviter qu'au cours d'une année ultérieure le niveau des interventions et des investissements dépasse la capacité de réalisation (organisation du travail, main-d'œuvre, disponibilité du réseau).

L'outil de simulation tient aussi compte du nombre d'heures-personnes requis pour procéder aux interventions et de la valeur des investissements nécessaires.

Par ailleurs, le Transporteur procède annuellement à une mise à jour des ressources requises par interventions, notamment le nombre d'heures-personnes et les coûts. Cela permet ainsi d'avoir une appréciation plus juste de l'effort de réalisation et du niveau des investissements requis.

Tel que le Transporteur l'a expliqué à la pièce HQT-2, Document 1, section 6.3 de la demande R-3670-2008, des paramètres peuvent être imposés à l'outil de simulation. Des critères d'asservissement (âge des actifs, coûts, main d'œuvre, nombre d'interventions et risques) ont également été ajoutés.

Le Transporteur a poursuivi le développement de la Stratégie afin d'y intégrer des paramètres lui permettant de tenir compte de la disponibilité des ressources humaines nécessaire pour effectuer les interventions requises. Le Transporteur note actuellement des contraintes liées à la disponibilité du réseau pour certaines régions seulement qui sont gérées à même les plans d'interventions de ces régions. Le Transporteur ne prévoit

pas pour le moment l'intégration d'un paramètre reflétant la disponibilité du réseau de transport.

Le Transporteur rappelle que l'outil de simulation peut être utilisé en boucle ouverte ou en boucle fermée :

- La simulation en boucle ouverte rend compte d'une gestion de la pérennité basée sur l'attente d'une défaillance complète (*Run to failure*) de fin de vie de l'équipement sans aucune intervention planifiée;
- La simulation en boucle fermée rend compte d'une gestion de la pérennité basée sur la gestion du risque. Elle permet de planifier des interventions en pérennité avant la défaillance de fin de vie des équipements.

Dans les sections qui suivent, le Transporteur aborde successivement les différents équipements ayant un profil de vieillissement, en présentant pour chacun d'eux l'évaluation du niveau des investissements.

Équipements d'appareillage

Tel que cela est plus amplement expliqué à la pièce HQT-2, Document 1, section 7.1.1 de la demande R-3670-2008, le Transporteur a proposé une double approche de gestion de la pérennité, soit une gestion passive (en boucle ouverte) résultant d'une utilisation jusqu'à la défaillance de fin de vie de l'équipement ou imposée par le résultat d'un test et une gestion active (en boucle fermée) à risque contrôlée par la planification proactive d'interventions.

Le tableau 19 suivant présente la répartition des équipements d'appareillage selon cette double approche de gestion de la pérennité.

Tableau 19 Double approche de gestion de la pérennité des équipements d'appareillage

Appareillage	Gestion en boucle ouverte Résultant d'une défaillance (fin de vie historique) ou conditionné par le résultat d'un test)	Gestion en boucle fermée Risque contrôlé avec une planification proactive d'interventions
Disjoncteurs	Disjoncteurs à 600V	Autres disjoncteurs
Sectionneurs	Sectionneurs	Sans objet
Équipements de transformation et inductances	Inductances à air	Inductances shunt Transformateurs de mesure Transformateurs de puissance
Équipements de compensation (inductances exclues)	Sans objet	Batteries de condensateurs
Autres équipements	Accumulateurs Chargeurs d'accumulateurs Parafoudres Transformateurs de services auxiliaires	Compresseurs Sécheurs Inductances de mise à la terre

Le Transporteur rappelle que ces approches sont par ailleurs bonifiées par deux autres facteurs d'optimisation : les économies résultant du regroupement des interventions planifiées et intégrées dans un projet et le taux d'accroissement annuel limité (de 5 %) des ressources.

La Régie demandait, dans sa décision D-2008-020 (p.14), des exemples types d'analyses coûts/bénéfices en Maintien des actifs pour les principales familles d'actifs, en mentionnant, le cas échéant, les limites ou difficultés rencontrées dans la réalisation de cet exercice. La Régie, dans sa décision D-2009-013 (p.27), est par ailleurs satisfaite des réponses données par le Transporteur à ses demandes concernant l'analyse coût/bénéfice en Maintien des actifs.

Composants des lignes aériennes

Tel que cela est plus amplement expliqué à la pièce HQT-2, Document 1, section 4 de la demande R-3739-2010, le Transporteur a proposé une gestion en boucle fermée de la pérennité des composants des lignes aériennes. Le Transporteur limite l'augmentation des ressources à 5 % par année. Le taux de risque prévu des composants des lignes aériennes continuera à augmenter pour se stabiliser à long terme.

2.3.2 Équipements sans profil de vieillissement

Ouvrages civils

L'évaluation du niveau d'investissements requis se base, pour le moment, sur les analyses effectuées par les experts techniques du Transporteur et la grille de risque des ouvrages civils.

Équipements d'automatismes

Le Transporteur rappelle que la pérennité des équipements d'automatismes est largement liée à l'obsolescence (technologie périmée) et à la vétusté (état, maintenabilité, performance) des équipements mais peu liée au vieillissement des équipements.

Le niveau des investissements des équipements d'automatismes est établi à partir des informations découlant de l'application des critères de pérennité et de la grille du risque des équipements d'automatismes tel que cela est présenté de façon détaillée à la pièce HQT-1, Document 1, section 3.1.1.2 de la demande R-3739-2010.

Compensateurs synchrones et statiques

Compte tenu de leur petit nombre, l'évaluation du niveau d'investissement requis se base sur une analyse au cas par cas pour ces équipements dispendieux.

Au terme du troisième volet de l'étape 1, le Transporteur dispose d'un scénario de gestion de la pérennité performant au sens des coûts et des bénéfices duquel le niveau d'investissements nécessaire au maintien des actifs et les quantités d'équipements devant faire l'objet d'interventions sont déduits. Il dispose également pour une partie des équipements des niveaux d'investissements requis établis en fonction d'analyses spécifiques.

2.4 Orientations sur le choix des projets à retenir (étape 2)

Le Transporteur rappelle que les orientations guident les gestionnaires des unités territoriales dans le choix des projets soumis. Les orientations visent entre autres l'intégration des projets en Maintien des actifs avec les projets de Croissance des besoins de la clientèle.

Les orientations sont également établies à partir des analyses technico-économiques effectuées par le Transporteur. Tel que cela est plus amplement expliqué à la section 5 de la pièce HQT-2, Document 1 de la demande R-3670-2008, les analyses technico-

économiques permettent d'établir s'il est préférable de procéder au remplacement ou à la remise à neuf des divers équipements.

Les analyses technico-économiques réalisées à ce jour par le Transporteur sont les suivantes :

- Étude transformateurs de puissance et inductances 2008 (en cours de révision);
- Étude disjoncteurs Moyenne Tension 38 kV et moins 2009 ;
- Étude disjoncteurs Haute Tension 245 kV et moins 2009 ;
- Étude disjoncteurs Haute Tension 315 kV à 735 kV et des systèmes d'air (en cours de révision).

Lorsqu'un remplacement s'avère la meilleure solution économique, les équipements sont soumis à un processus de normalisation et d'homologation tenant compte des aspects suivants : performance technique, économie du coût global (coût de possession), sécurité du personnel et environnement.

Lorsqu'une remise à neuf s'avère la meilleure solution économique, elle doit être exécutée conformément au guide de remise à neuf approuvé pour ce type d'équipement par l'unité d'expertise concernée et faire l'objet du contrôle de qualité qui y est prescrit. Ces guides permettent d'assurer l'uniformité des travaux et la qualité des projets.

De plus, le Transporteur rappelle qu'il a mis en place depuis 2009 la réingénierie globale de sa chaîne d'approvisionnement qui a été décrite de façon détaillée à la pièce HQT-3, Document 1 de chacune de ses demandes tarifaires R-3706-2009 et R-3738-2010. Cette réingénierie amène le Transporteur à normaliser ses choix d'équipements pour l'ensemble de ses projets de croissance et de pérennité. Cette normalisation est maintenant prise en considération dans le choix de la solution retenue.

Au terme de l'étape 2, le Transporteur a fourni les orientations afin de s'assurer que les projets soumis par les gestionnaires des unités territoriales cadrent avec le niveau d'investissements et la quantité d'équipements devant faire l'objet d'interventions établis à partir des produits (grille de risque, outil de simulation, etc.) de la Stratégie.

2.5 Déterminer les projets et les investissements à retenir (étape 3)

Le Transporteur rappelle qu'à cette étape, il valide la conformité des projets soumis avec les besoins de renouvellement d'équipements identifiés et détermine les projets retenus et les investissements requis.

Le Transporteur tient compte dans ses analyses de l'état réel de certains équipements et des interventions planifiées intégrant plusieurs types d'équipements dans un même projet afin de réduire les coûts globaux.

De plus, la planification intégrée des interventions liées à la pérennité des actifs et celles liées à la croissance des besoins de la clientèle permet au Transporteur de réaliser les bons projets, au bon moment et au meilleur coût, tel que cela est démontré à la pièce HQT-3, Document 1 de chacune de ses demandes tarifaires R-3669-2008, R-3706-2009 et R-3738-2010. La planification intégrée fait maintenant partie intégrante des façons de faire du Transporteur et lui permet d'avoir une vision globale de l'évolution de son réseau, tout en assurant la cohérence de l'ensemble des actions nécessaires à la réalisation de sa mission de base.

La planification intégrée permet des gains d'efficience opérationnelle (réduction du nombre d'interventions) en plus de gains en terme d'optimisation quant au choix de solution dans certains cas. Par exemple, les interventions diagnostiquées en pérennité sont intégrées à celles prévues en croissance et les analyses permettent de proposer des solutions par zone d'étude, ce qui permet de diminuer les interventions à la pièce. Ces solutions sont présentées dans les plans d'évolution des zones concernées, comme par exemple dans le cas de la Communauté Métropolitaine de Québec et celui de l'île de Montréal qui est présenté à la section suivante.

Cas particulier de l'Île de Montréal

Le réseau à 120 kV de l'Île, déployé dans les années 50 et 60, arrive à la fin de sa vie utile.

Le Transporteur a analysé les besoins de croissance et de pérennité requis sur ce territoire et a proposé à la fin de l'étape 3 de sa démarche un plan qui permet de favoriser le développement de l'architecture du réseau à 315-25 kV en implantant de nouveaux postes satellites à 315-25 kV en remplacement des postes à 120-25 kV pour l'alimentation des postes satellites en fonction de la charge actuelle et en intégrant les besoins de croissance et de pérennité. De ce plan découle un programme d'équipements présentant un ordonnancement de projets à réaliser pour répondre aux problématiques identifiées qui tient compte des installations à risque et des problématiques de vieillissement spécifiques aux installations extérieures et intérieures.

Le Transporteur a ainsi terminé le Plan d'évolution du réseau de l'île de Montréal qu'il a déjà déposé sous pli confidentiel à l'annexe 1 de la pièce HQTD-1, Document 1 du dossier R-3750-2010².

Approche par portefeuille

La Régie a demandé au Transporteur, dans sa décision D-2010-056 (p.14) de démontrer, à l'aide d'exemples, l'effet de l'approche par portefeuille jumelée à la planification intégrée pour qu'elle puisse apprécier les gains obtenus par rapport à la situation prévalant avant la mise en œuvre de ces outils.

L'approche par portefeuille ainsi que la planification intégrée de la croissance et de la pérennité permettent au Transporteur d'avoir une vision globale et d'assurer une gestion optimale des investissements.

L'approche par portefeuille permet d'établir les investissements selon les enjeux propres (coût, main d'œuvre) à chacun de ses portefeuilles (appareillage, automatismes, lignes, télécommunications) dans le contexte global des investissements qu'il prévoit effectuer dans une période donnée, tant pour les projets dont le coût individuel est égal ou supérieur à 25 M\$ que pour ceux dont le coût individuel est inférieur à 25 M\$. L'approche par portefeuille tient compte de la Stratégie avec une vision à long terme plutôt que l'identification et la priorisation des projets à court terme. Le Transporteur peut maintenant faire un suivi des différents portefeuilles d'investissements liés à un projet grâce à son système informationnel.

La demande relative au projet de remplacement d'une ligne souterraine entre les postes Notre-Dame et Berri³ permet de démontrer l'effet de l'approche par portefeuille d'investissements en appareillage et en lignes jumelée à la planification intégrée des besoins de pérennité et de croissance. Cette demande a été autorisée par la Régie dans sa décision D-2010-029, le 22 mars 2010. Le tableau 20 suivant présente les coûts des travaux par élément :

³ Demande relative au projet de remplacement d'une ligne souterraine entre les postes Notre-Dame et Berri, dossier R-3718-2009, décembre 2009.

² Dossier R-3750-2010, *Demande du Transporteur et du Distributeur* relative au poste Bélanger, décembre 2010.

Tableau 20 Coûts des travaux par élément (en milliers de dollars de réalisation)

Ligne Beri	ri – Notre-Dame Croissance *	Démantèlement circuit existant ** (pérennité)	Total Ligne	Poste Berri Remplacement unité de mesure (pérennité)	Total Ligne et Poste
27 715,0	4 847,9	519,2	33 082,1	445,9	33 528,0

^{* :} écart pérennité / croissance vs pérennité seul

Tel qu'il appert du tableau 20 précédent, les coûts de remplacement de la ligne associés à la catégorie « maintien des actifs » sont de 27,7 M\$. Un montant supplémentaire de 4,8 M\$ est investi pour tenir compte des besoins de croissance de la ligne et augmenter la capacité de transport de cette ligne et est imputé à la catégorie « croissance des besoins de la clientèle ». Les coûts de 0,5 M\$ associés au démantèlement de la ligne actuelle sont imputés à la catégorie « maintien des actifs ». Le portefeuille d'investissements en lignes s'élève ainsi à 33,1 M\$.

Par ailleurs, les coûts associés au remplacement de l'unité de mesure du poste Berri sont imputés à la catégorie « maintien des actifs », et constituent ainsi le montant dans le portefeuille d'investissement de 0,4 M\$ en appareillage.

Les améliorations envisagées à l'étape 3 concernent l'amélioration des systèmes d'information du Transporteur. De plus, comme il le soulignait dans le premier volet de l'étape 1, le Transporteur verra à uniformiser les méthodes d'évaluation des équipements qui sont utilisées pour tenir compte des particularités locales spécifiques.

Au terme de l'étape 3, le Transporteur dispose de tous les éléments nécessaires pour formuler sa demande d'autorisation du budget annuel des investissements auprès de la Régie.

3. Suivi et poursuite de la Stratégie

3.1 Appréciation par la Régie de la Stratégie

Le Transporteur souhaite rappeler l'appréciation faite par la Régie, plus particulièrement dans sa décision D-2009-013 (p.10 et 27) sur certains aspects de la Stratégie :

« Par ailleurs, tenant compte des contraintes identifiées par le Transporteur et de l'implantation récente de la Stratégie, la Régie considère que, pour l'instant, la séparation des équipements en fonction de leur appartenance ou non au réseau

^{** :} estimation paramétrique globale

« Bulk » n'est pas un élément critique pour l'appréciation de la nature et du niveau des investissements requis pour assurer la pérennité et la fiabilité du réseau du Transporteur.

La Régie juge cependant approprié de faire le point en 2011 sur le résultat de l'application de la Stratégie.

[...]

La Régie est satisfaite de l'état d'avancement de la Stratégie, même si certains aspects de la démarche actuelle, comme l'élaboration des critères de pérennité pour l'ensemble des familles d'actif ne sont pas complétés.

La Régie considère que la démarche optimisée du Transporteur permet d'intégrer l'évaluation du niveau de risque à sa démarche actuelle par l'utilisation des grilles d'analyse du risque par famille d'actifs et de prioriser les interventions requises. La Régie encourage le Transporteur à poursuivre l'optimisation de sa démarche en définissant des scénarios d'intervention à long terme permettant d'établir le niveau d'investissement optimal en fonction du risque. Elle est également satisfaite de la preuve quant à la suffisance des moyens à la disposition du Transporteur pour s'acquitter de ses obligations en matière environnementale.

La Régie est par ailleurs satisfaite des réponses données par le Transporteur à ses demandes concernant l'application de la Stratégie et l'analyse coût/bénéfices. »

Le Transporteur souligne les démarches qu'il a effectuées par la suite faisant suite aux commentaires de la Régie. En ce qui concerne la séparation des équipements en fonction de leur appartenance ou non au réseau « Bulk », le Transporteur soutient respectueusement qu'il n'est pas toujours opportun de consacrer des efforts supplémentaires pour isoler les données relatives aux équipements « Bulk » compte tenu notamment des coûts qui seraient encourus.

De plus, dans le cadre du développement de la Stratégie, le Transporteur a complété en 2009 les critères de pérennité pour l'ensemble des équipements, notamment les transformateurs de mesure et les autres équipements d'appareillage qu'il a présentés de façon détaillée à la pièce HQT-2, Document 1 de la demande R-3739-2010.

Le Transporteur a également poursuivi l'optimisation de sa démarche en évaluant et classant les composants des lignes aériennes dans une grille d'analyse du risque qu'il a complété en 2009, et en définissant une stratégie de gestion de la pérennité de ces

équipements qu'il a expliqué amplement à la pièce HQT-2, Document 1 de la demande R-3739-2010.

3.2 Suivi de la Stratégie

Dans une perspective d'amélioration continue, le Transporteur a assuré un suivi de la Stratégie en mesurant la conformité des interventions réalisées aux résultats de l'application de la Stratégie et en validant les impacts de celle-ci sur l'évolution de l'état et la fiabilité de son parc d'équipements selon le niveau de risque qu'il gère.

La Stratégie a été mise en application en 2008 pour les équipements d'appareillage et les ouvrages civils de même que les équipements d'automatismes alors qu'elle est en cours d'implantation et d'application pour les composants des lignes aériennes.

Le Transporteur présente un suivi des interventions réalisées sur son réseau de transport en fonction du risque et un suivi du taux de risque de son parc d'équipements dans les sections qui suivent.

3.2.1 Suivi des interventions en fonction du risque

Le Transporteur a présenté le suivi des interventions faites sur son réseau de transport en fonction du risque depuis le début du processus en 2008 jusqu'à maintenant dans ses demandes R-3707-2009 et R-3739-2010 relatives respectivement au budget des investissements 2010 et 2011. Ce suivi est réalisé pour les équipements qui ont été évalués et classés dans une grille d'analyse du risque permettant de cibler les équipements à risque (c'est-à-dire les équipements à risque élevé, fort et moyen), et ce pour les équipements d'appareillage (électrique et mécanique) et les équipements d'automatismes.

La Stratégie permet au Transporteur de cibler les interventions en pérennité. Ces interventions sont précisées et bonifiées par des diagnostics d'état local (risque diagnostiqué). La combinaison de ces deux types d'interventions constitue entre 65 à 70 % du plan d'interventions dans une année.

Le Transporteur réalise d'autres types d'interventions pour compléter son plan annuel. En effet, des situations d'urgence peuvent survenir en cours d'année et affecter la planification des interventions à effectuer. Ainsi, des remplacements d'équipements sont généralement justifiés pour des raisons de fiabilité ou de sécurité (problèmes observés sur des équipements ou des bris fortuits). Enfin, des remplacements d'équipements sont réalisés conjointement dans le cadre d'une approche dite de projet pour des raisons d'efficacité (optimisation des coûts de réalisation, cohérence technique, etc.).

Le Transporteur rappelle qu'il suit les interventions en fonction du risque des équipements, en particulier en ce qui a trait aux transformateurs, disjoncteurs et sectionneurs qui sont regroupés sous l'appellation Appareillage principal, comme il l'a fait dans ses demandes précédentes R-3707-2009 et 3739-2010.

Les figures 2 et 3 suivantes illustrent les interventions réalisées en 2008, 2009 et 2010, et estimées en 2011 respectivement sur les équipements d'appareillage principal et les équipements d'automatismes.

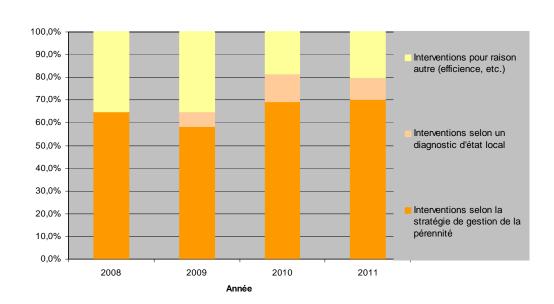


Figure 2 Évolution des interventions en Appareillage principal

Le Transporteur constate que les pourcentages d'interventions réalisées selon la Stratégie de 2008 à 2010 et estimées pour 2011 sur les équipements à risque sont comparables au pourcentage visé de 65 à 70 % du plan d'interventions dans une année, démontrant ainsi les résultats probants de l'application de la Stratégie sur les équipements d'appareillage principal. Le Transporteur observe une tendance du pourcentage d'interventions selon la Stratégie à près de 70 % qui augmente à près de 80 % si l'on ajoute les interventions à risque selon un diagnostic d'état local ainsi qu'une une tendance du pourcentage d'interventions pour raison autre à moins de 20 %.

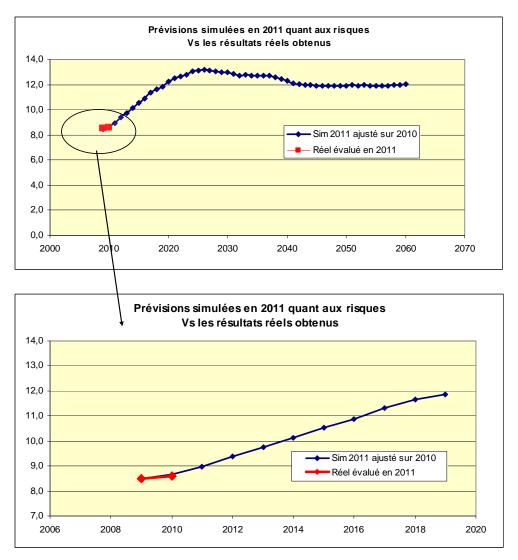
100% 90% Interventions pour raison autre (efficience, etc.) 70% 60% Interventions selon un 50% diagnostic d'état local 40% 30% Interventions selon la 20% stratégie de gestion de la pérennité 10% 0% 2008 2009 2010 2011 Année

Figure 3 Évolution des interventions en Automatismes

Le Transporteur constate que les pourcentages d'interventions réalisées selon la Stratégie de 2008 à 2010 et estimées pour 2011 sur les équipements à risque sont comparables au pourcentage visé de 65 à 70 % du plan d'interventions dans une année, démontrant ainsi les résultats probants de l'application de la Stratégie sur les équipements d'automatisme. Le Transporteur rappelle que les interventions en automatismes sont liées en partie aux autres projets du réseau de transport d'électricité, notamment les projets de la clientèle et les projets touchant une grande partie des équipements d'appareillage d'un poste. Le Transporteur observe une tendance du pourcentage d'interventions selon la Stratégie à près de 70 % qui augmente à plus de 70 % si l'on ajoute les interventions selon un diagnostic d'état local. Par ailleurs, le pourcentage des interventions pour raison autre se maintient à un pourcentage à moins de 30 % et s'explique par le remplacement de certains équipements d'automatismes à faible risque réalisé pour des raisons de cohérence technique.

3.2.2 Suivi de l'évolution du taux de risque

Le Transporteur rappelle que la Stratégie lui permet de lisser les investissements et les interventions dans le temps tout en contrôlant le niveau de risque à long terme.


Le Transporteur s'assure de l'évolution du taux de risque de son parc d'équipements en comparant les prévisions simulées et les résultats réels. Cela permet au bout de

quelques années de valider tout d'abord le vieillissement du parc selon les prévisions simulées et ensuite de mettre à jour les prévisions simulées à partir des résultats réels.

La figure 4 suivante illustre l'évolution du taux de risque.

Figure 4 Évolution du taux de risque

Les résultats démontrent que le taux de risque évolue selon les prévisions simulées et que partant, le Transporteur garde le cap sur le contrôle du niveau de risque planifié et même le réduit.

3.2.3 Impact de la Stratégie sur l'indice de continuité

La Régie, dans sa décision D-2008-020, demandait de trouver une façon de relier les investissements à l'indice de continuité de service et de rendre compte, au besoin, des difficultés rencontrées dans cet exercice.

En réponse à cette demande, le Transporteur a mentionné à la pièce HQT-2, Document 1, section 10 de la demande R-3670-2008, qu'il a comparé les postes dont l'indice de continuité de service (IC) (bris d'équipement) est supérieur à la moyenne (0,2 heure) avec le taux de risque de ces mêmes postes. La comparaison ne révèle aucune corrélation claire entre les équipements à risques et l'IC. Ceci peut possiblement s'expliquer par le fait que les causes de bris sont diverses, et ne sont pas nécessairement liées au taux de risque. Les bris peuvent en effet résulter de causes comme l'augmentation de la sollicitation des équipements sur le réseau ou la robustesse moindre des équipements nouveaux.

L'analyse par le Transporteur indique qu'il ne voit toujours pas de lien direct entre le taux de risque et l'indice de continuité.

3.3 Poursuite du développement et du déploiement de la Stratégie

3.3.1 Poursuite des travaux en cours

Le Transporteur prévoit poursuivre les travaux suivants :

- l'élaboration des critères de pérennité des ouvrages civils ;
- le raffinement des courbes du taux de défaillance (profil de vieillissement);
- l'évolution des outils pour refléter l'évolution des façons de faire du Transporteur;
- les activités de maintenance ciblée sur les équipements à risque qui ne font pas l'objet d'interventions à court terme, et l'adaptation au besoin de ses normes et pratiques de maintenance.

3.3.2 Poursuite du déploiement de la Stratégie

Le Transporteur entend poursuivre le déploiement de la Stratégie en Appareillage et en Automatisme qui arrive à un certain niveau de maturité. À ce stade, il s'agit de poursuivre l'application de la Stratégie afin de faire face au vieillissement de ses équipements et au nombre important d'équipements qui atteindront leur fin de vie utile au même moment.

Le déploiement de la Stratégie en Lignes en est encore à ses débuts. Le Transporteur est en cours d'implantation et d'application de la Stratégie qu'il a complétée en 2009 et présentée à la pièce HQT-2, Document 1 de la demande R-3739-2010.

3.3.3 Amélioration de la Stratégie

Malgré les défis liés au vieillissement de ses équipements et à la croissance des investissements requis, le Transporteur entend rester critique et vigilant par rapport à la Stratégie. Quoique l'approche appliquée lui apparaisse la meilleure pour l'instant, il entend poursuivre l'évaluation et l'amélioration continue de la Stratégie dans un contexte d'affaires évolutif.

Conclusion

La Stratégie du Transporteur constitue une amélioration significative de la démarche utilisée antérieurement. Le Transporteur vise, par l'application de la Stratégie, à déterminer un niveau optimal d'interventions pour être en mesure d'intervenir à court terme sur les actifs, et lisser les interventions et les investissements dans le temps tout en contrôlant le niveau de risque.

La transition d'un parc d'actifs jeunes à un parc d'actifs vieillissants explique la nécessité de revoir et d'adapter la démarche du Transporteur en la matière. La Stratégie améliore plusieurs aspects.

- D'une part, la pérennité du parc est assurée par une vision des actifs dans leur durée. En tenant compte d'un horizon aussi lointain que cinquante (50) ans, le Transporteur s'assure d'une stratégie de gestion à long terme qui garantit aux futurs utilisateurs l'héritage d'un réseau en santé.
- D'autre part, par un pronostic plus juste du comportement anticipé du parc par rapport aux actifs vieillissants, le Transporteur gère les niveaux de risque prévus et sélectionne une stratégie optimisée en regard des ressources (coûts et maind'œuvre) en évitant de surinvestir là où le risque ne le justifie pas.
- A court terme, les grilles de risque intégrées à la Stratégie permettent au Transporteur d'établir le niveau d'interventions nécessaires et, conséquemment, les investissements requis pour assurer la pérennité des actifs dans le cadre de la demande d'autorisation à la Régie des investissements en Maintien des actifs du Transporteur pour l'année 2012.

La Stratégie du Transporteur permet donc d'établir les investissements à effectuer à court terme, dans un cadre cohérent à long terme assurant la pérennité comme telle. Le

Transporteur entend poursuivre le développement, le déploiement et l'amélioration de la Stratégie afin d'assurer la pérennité de son parc d'actifs.

La Stratégie porte déjà ses fruits avec les résultats confirmant son application sur le parc d'actifs du Transporteur. La Stratégie se déploie tel que prévu et permet à terme de renouveler les équipements en temps opportun.