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Abstract

In valuing future cash flows, the standard practice is to take the current cash flow and then
extrapolate at an expected growth rate, which can vary at different points in time. This practice stems
from the standard way of dealing with time value of money problems under certainty. However, with
uncertain cash flows, this practice underestimates the expected cash flows when the growth rates are
serially correlated. As a result, both value and the equity cost, calculated as an internal rate of return,
are biased low. Given the prevalence of serial correlation in the economy, this paper demonstrates
how to incorporate the effects of serial correlation in a simple way and demonstrates by way of a
simulation that the effects can be significant. As a result, it casts doubt on the usefulness of several
standard valuation approaches and results.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Discounting expected values with parameter uncertainty

Discounting (expected future) cash flows (DCF) is at the core of modern finance both
for valuation purposes and for estimating internal rates of return for use as discount rates.
For example, the constant growth version of the DCF model is commonly used for valum g

low risk firms and for calculating their cost of equity capital.
point out, “The~discountedcashflow(DCF) formula™i§
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¢ sophisticated | corporate models. However it is well known that dlthough
correct for valuing risk-free securities, like government bonds, the DCF model does not
handle uncertainty very well. The reason for this is that, in contrast to risk based models,
the effects of uncertainty are implicit, either through their impact on market values or the
required rate of return. However, even this implicit incorporation of uncertainty fails to
recognise parameter uncertainty, that is, how uncertainty affects the estimation of the
model’s key parameters.

Incorporating parameter uncertainty in a realistic way into the expected cash flow
stream is the main objective of this paper. The motivation for doing this is quite
simple: without taking parameter uncertainty into account conventional applications of
the DCF model consistently underestimate the expected future cash flow stream and
as a result underestimate both value and the dlscount rate when calculated as an
mtemal rate of retumn. This un “oft | '

that” for individual stocks:- For example, the 1ong-run real growth rate in
the economy is normally pegged at about 4.0%; with 1.0-2.0% inflation, this means a
nominal long-run profit growth of about 5.0—6.0%, otherwise corporate profits would
indefinitely increase each year as a share of GDP. With an S&P500 average dividend
yield under 1.0%, this would put the nominal DCF equity cost for the * market

] vards. Myurq and
Borucki (1994), for example, point out how the DCF estimates they obtain are all
well below the actual returns on equity eamed by regulated firms to the extent that
they wonder whether regulators just pay “lip service” to the accepted theory of
regulation.

The main reason why parameter uncertainty affects the DCF model is that there is
pervasive serial correlation in the economy. As the economy varies through time, profits
and dividends reflect the serial correlation of the business cycle. As a result, the
expected cash flow stream is greater than that estimated by simple extrapolation.
Incorporating parameter uncertainty in the presence of serially correlated growth rates
produces a relatively simple and intuitive generalization of the constant growth DCF
model.

The organization of the paper is as follows. Section 2 discusses the general valuation
approach and the central problem in estimating expected cash flows. Section 3 derives a
simple formula to incorporate growth rate uncertainty assuming that both the growth rate
and the cash flows each period are normally distributed. Section 4 provides estimates from
a simple simulation to develop a deeper understanding of the model and examines the
robustness of the approximation used in Section 3. Section 5 looks at some empirical
results and discusses how these results affect valuation problems and Section 6 adds some
conclusions and suggestions for further research.
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2. Valuation approaches

Most valuation problems involve multiple time periods and the standard approach in

finance is to specify the problem as,
T
Sy )
“~ (1+K)

where value is determined by discounting the period ¢ expected cash flows E(C)) over a
specified time horizon, 7, which can extend to infinity, at a risk adjusted discount rate, K.
Extensive research has examined how the discount rate is determined in the multiperiod
problem. For example, both Mossin (1968) and Fama (1970) have shown how different
types of multiperiod valuation problems can be collapsed into a properly specified single
period problem, whose solution involves discounting an expected value with a risk
adjusted discount rate. Subsequent work, for example, Myers and Tumnbull (1977), has
focussed on the assumptions required to use the CAPM required rate of return as the
discount rate for valuing multiperiod cash flows. However, the basic approach of
discounting an expected cash flow with an appropriate discount rate is preserved. What
is important is that it is the expected value, not the modal or median value, that is being
discounted. This is the focus of this paper: not how the discount rate is determined, but
how the expected cash flows are estimated.

The basic structure of the valuation problem requires that we estimate each period’s
expected cash flow, that is, we need the expected cash flow in each of period 1, period 2,
etc. Hence, we need to understand the process that determines the cash flows each period. In
practice, it is extremely difficult to forecast cash flow independently for each year, so that a
variety of simplifications are used. Gordon (1962), for example, introduced the simplifi-
cation that there is a long-run expected growth rate, g, for the cash flows. The formula fora
geometric series then allows Eq. (1) to collapse to the familiar constant growth model,

y = ElG] )
K-g
where the expected cash flow for time period 1 is valued using a growth adjusted discount
rate. Alternative assumptions about the growth rate give rise to the multistage and finite
growth rate models.

There are a large number of plausible assumptions for the expected growth rate, each of
which give rise to a variation on the basic discounted cash flow model of Eq. (1).
However, they all have in common the basic assumption that the growth rate, although
different for different periods, is still certain, for example, that the cash flows grow at 10%
for 5 years and then 5% forever. None of the extant models take into account the
uncertainty in the expected growth rate itself, that is, that the growth rate may have an
expected value of 10% or 5%, but is itself stochastic.

In this research, we show that in general, the expected cash flow stream will be higher
than the current cash flow extrapolated forward at the expected growth rate. That is, that
the conventional “certainty” approach, used in textbooks, casebooks and practice, of
extrapolation based on expected growth rates underestimates the expected cash flow
stream and as a result underestimates the value of an investment. Conversely, when the
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DCF equation is reversed to calculate the discount rate, as an internal rate of return that
sets the present value of the expected cash flow stream equal to the market price, the
discount rate will also be underestimated.

The central intuition of the paper can be developed by analyzing the first few expected
cash flows. For example, taking the first period’s expected cash flow, it is simply the
current cash flow times the growth expected for time period 1,

E[C\] = E[Co(1 + &) 3)

where g; is the uncertain growth rate for time period one. Simplifying this equation is
straightforward, since there is only one source of uncertainty. As a result, the expectation
operator can be taken through and the expected cash flow is simply the current cash flow
extrapolated at the expected growth rate for time period 1.

For the second period, the expected cash flow is

E[C] = E[Co(1 +g1)(1 + g2)] )

In form, this is the same as before. However, there are now two sources of uncertainty,
that for the growth rate in period 1, as well as that for time period 2. Expanding the
expectation, we get

E[C)] = Co(1 + E[g])(1 + Elga]) + CoCov(gr, g2) (5)

where Cov( g;,g») is the covariance between the growth rates in time periods 1 and 2. Only if
the growth rates are serially uncorrelated will the covariance be zero and the expected cash
flow equal to the current cash flow compounded forward at the two expected growth rates.

Eq. (5) shows the central problem in forecasting expected cash flows: if there is serial
correlation in the growth rates the expected cash flow stream will generally be higher than
that obtained from simply extrapolation at the expected growth rate. This comment is
general to any valuation problem that requires discounting expected cash flows and applies
to the constant, multistage, and finite growth models, as well as any model that uses an
expected growth rate. However, our focus will be on the constant growth model. This is
for two reasons: first it is one of the most important models in its own right, particularly as
an equity cost model, and second even in finite or multistage growth models, the terminal
value is almost always set using the constant growth model. As a result, it is an important
component of more general models.

The obvious counterpart to the constant growth model is the constant expected growth
model, that is, that E[ g,]= g, where the unsubscripted growth rate is the constant expected
growth rate. In this case, Eq. (5) becomes

E[Cy] = Co(1 +g)* + CoCov(gr, £2) (6)

where the covariance term indicates the bias involved in simple extrapolation.

How we simplify this covariance depends on the assumptions imposed on the
uncertainty in the growth rate. A variety of formulations are possible, but for our purposes,
we assume the simplest possible process that captures the basic intuition:

g =(1-p)g+pg-1+& 7)
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where p is the serial correlation coefficient and € the random error term. By assumption,
the random error term is assumed to be normally distributed, iid, with a mean of zero.
Eq. (7) is a simple autoregressive model with one minus the serial correlation coefficient
measuring the tendency of the growth rate to return to its “long-run” expected level. It
has two interesting extremes, where the serial correlation is either zero or one. If there is
no serial correlation, p=0, the covariance in Eq. (6) is zero and the simple constant
growth model is unbiased. On the other hand, perfect serial correlation, p= 1, means that
the growth rate is a simple random walk. Eq. (7), therefore, includes the “standard”
DCF model, as well as a more general one in which the model is biased due to serial
correlation.

If this stochastic growth assumption is substituted into the covariance term in Eq. (6)
and we start at the long-run average growth rate (g), we get,

E[C] = Co(1 +g)* + Copa® (8)

where ¢ is the variance of the random error term in Eq. (7) and p the serial correlation
ceefficient. If the growth rates have positive serial correlation, the cash flow in the second
period will be unambiguously greater than if they are uncorrelated. Moreover, the effect of
the serial correlation is compounded by the uncertainty in the error term. As a result, the
bias created by ignoring the uncertainty in the expected growth rate will differ system-
atically across firms due to differences in both the serial correlation coefficient, as well as
the uncertainty in their growth rates.

Eq. (8) is perfectly general. Although the specific equation stems from the correlation
structure assumed in Eq. (7), different types of dependencies across time will just produce
a different structure of covariance terms; they will not disappear.

3. A generalized constant expected growth model

The expected cash flow in time period 3 is simply,
E[C3] = E[G](1 + g) + Cov(Cy, g3) 9)

where again the expected cash flow is just the previous expected cash flow compounded
forward at the expected growth rate plus a covariance term. The covariance term will
always consist of the covariance between the prior cash flow and the contemporaneous
growth rate. For the third period cash flow, the uncertainty stems from the uncertain
growth rates in both time periods 1 and 2. This covariance can be simplified due to a result
from Stevens (1971) for multiplicative normally distributed random variables'

Cov(Cy,83) = E[C1]Cov(g2, g3) + Co(1 +g)Cov(gi, g3) (10)

! Steven’s result states Cov(ab,c)=E[a]Cov(b,c)+ E[b]Cov(a,c).
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The first covariance is the same as in Eq. (8) and represents the immediate impact of the
serial correlation between the growth rates in time periods 2 and 3, this is just E[C;]po”.
The second covariance picks up the impact of the growth rate in time period 1 on that in
time period 3. By repeated substitution, this is Co(1 +g)p?e>. By combining these results,
we get,

E[C3] = E[G)(1 + g) + E[Ci]pa* + Co(1 + g)p*d? (11)

This result is quite intuitive. The third period expected cash flow is the prior
expected cash flow compounded forward for one period plus two additional terms
reflecting the serial correlation. Suppose, for example, the first period’s growth rate is
randomly high, since the growth rates are serially correlated this will affect the growth
rates in both time periods 2 and 3 through the serial correlation coefficient. If the second
period’s growth rate is again randomly high, then the third period’s cash flow will be
affected by the higher growth rates in both prior periods. Since each expected cash flow
is determined by the expectation of the prior cash flow and the growth rate, this
intertemporal dependence increases the expected cash flows. However, note that the
covariance terms will not be the same for each period, since the serial dependence of the
growth rates will first build as a result of the uncertainty in the first few growth rates
and then stabilize as the memory in the growth rates decays. Of course, how these terms
change depends on the size of the serial correlation coefficient and the type of
dependence assumed.

To simplify the covariance, note that the expected third period cash flow is affected by
both the prior expected cash flows and the serial correlation in the growth rate. In fact,
both terms contain the serial correlation coefficient, and the variance in the error term and
can be viewed as “coefficients” on both the prior expected cash flows, in this case for
those in time periods 1 and 2. For an arbitrary time period 7, the expanded expectation of
the cash flow is

E[Cr] = E[Cr](1 + &) + Cov(Cr_y1, gr) (12)

where Cy_ can be viewed as the product of two random variables Cr_ (1 +g7_ ) If
both these variables are assumed to be normally distributed, then Steven’s simplification
holds and a similar convolution of terms results.” In each case, the first term is the prior
expected cash flow times one plus the expected growth rate, the second term is the
expected cash flow two periods earlier times the serial correlation coefficient and the
variance term, while the third term is the cash flow three periods earlier times the serial
correlation coefficient squared, the variance in the error term and one plus the growth rate,
and the fourth term is the expected cash flow four periods earlier times the serial
correlation coefficient cubed, the variance in the error term and one plus the growth rate
squared.

2 This is approximate, since Cr . ¢ is the product of T — 2 normally distributed variables, which converges to
a lognormal.
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The following table shows how the expected cash flow builds over time.

Co E[C\] E[C] E[C5] E[C4]
E[C] l+g
E[Cy] pa’ I+g
E[C3] (1+g)p°s* pa® l+g
E[C4] (1+gy°p’s’ (1 +g)p’s” po’ l+g
E[Cs) (1+g)’p*c’ (1+gPp’s” (1 +g)p’d’ pa’ l+g

Each expected cash flow in the table is written as a function of the prior expected cash
flows, so that the values in the rows should be read as the coefficients on the expected cash
flow in the column headings, for example, E[C;]= Cy(1 +g). Writing the terms out in this
fashion allows a simplification in the spirit of Miller and Modigliani (1961). If, instead of
reading across the rows, we look at the columns, we can see that each expected cash flow
affects the next period’s expected cash flow by (1 +g), the following period’s expected
cash flow by pa”, the one after that by (1 +g)p*c?, the one after that by (1 + 2’ pd?, etc.
As is implicit in the autoregressive process, the influence of the first period’s growth rate
progressively dies off, as shown by the successive powers that the serial correlation
coefficient is raised to. However, note that after the first growth rate, the successive terms
are a geometric series that change by (1 +g)p. This allows us to simplify by collecting all
the terms involving the expected cash flows in each column, that is by going down the
columns in the table, instead of by going across each row.

For example, take the first set of coefficients on the Cy term. The first coefficient is
(1+g), the second is pa?, the third (1+g)p?c?, etc. Factoring the term po® from the
second term on, we have a simple geometric series growing by p(1+g). As a result, we
can collapse all of the future terms involving C, into one term®

pa? }

(D) (13)

C0[1+g+

Since all the expected cash flows have the same evolution of terms, they will all be
adjusted by this same term. We define the term in the square brackets as one plus the adjusted
growth rate g*. Using this adjusted growth rate, the table can be rewritten as follows,

Co E[C)] E[C)] E[C5] E[C4]
E[C(] I+g*
E[C,] I+g*
E[C5) l+g*
E[C4) l+g*
E[Cs] l+g*

This table has equivalent present value as the previous table, but a different meaning. The
expected cash flow in time period 1 is now equal to the current cash flow times one plus the

* This assumes convergence in the geometric series, if the growth rate is discounted the approximation is
marginally worse.
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“adjusted” growth rate. However, the adjusted growth rate is not an actual growth rate, since
from Eq. (3), E(Cy)=Cy(1 +g) and there are no adjustments needed for the first period’s
growth rate. What g* includes is the impact of the first period’s uncertain growth rate on the
expected value of all subsequent cash flows. Since this impact is the same for all subsequent
expected cash flows, we can collapse its impact into one “average” growth rate that gives
approximately the correct present value. In this way, the value of the cash flows is just

_ Co(1 +g*)

Vv
K~g*

(14)
which is identical in structure to the conventional constant growth model, except for the use
of the adjusted growth rate g* However, the adjusted growth rate is an artifact, at no point
will the expected cash flows actually be expected to increase at this rate.

How significant is the adjustment? Well, suppose the current cash flow is a dollar, the
expected long-run growth rate 5% and the discount rate 10%. Using the standard constant
growth model would indicate a price of $21. However, if the serial correlation coefficient is
0.4 and the standard deviation of the growth rate 10%, then the adjusted growth rate as
5.69% and the “true” value should be $24.5. By ignoring the serial correlation in the
growth rate, all future expected cash flows are underestimated, causing the estimated value
to be lower. Conversely, if the value is $24.5, using the standard DCF model would estimate
the investor’s required rate of return at 9.28% or 72 basis points below the assumed discount
rate of 10%. Regardless of the stock price, application of the “certainty” DCF model will
underestimate the discount rate, since it underestimates the expected cash flow stream.

With a 10% discount rate and a 5% long-run expected growth rate, the following table
highlights how significant the bias (in basis points) involved in ignoring the serial
correlation can be.

Variance Serial correlation

0.2 0.4 0.6
0.0025 6 17 40
0.01 25 69 162
0.04 101 275 648

With low levels of serial correlation and growth rate uncertainty, the underestimation is
relatively low, only six basis points for a 0.2-serial correlation coefficient and a standard
deviation of the growth rate of 5%. As either the correlation coefficient or the growth rate
uncertainty increase, the bias also increases. With a standard deviation of the growth rate
of 20% and a correlation coefficient of 0.6, the bias is 648 basis points or an adjusted
growth rate more than twice the expected growth rate. It is an empirical question as to
where in the previous table reasonable estimates of the bias actually lie.

Another way of looking at the bias in the growth rate is to consider the impact on the
valuation multiplier, which is just.

V_(l+g)

15
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Again, with a 10% discount rate and 5% long-run expected growth rate, the standard
multiplier would be 21 x cash flow. However, the multipliers with the adjusted growth
rate are

Variance Serial correlation

0.2 04 0.6
0.0025 21.3 21.8 22.9
0.01 22.2 24.5 31.6
0.04 26.6 48.1 udf

which range from minor adjustments in the case of limited serial correlation to a
situation where the multiplier is undefined (udf) since the adjusted growth rate of
11.48% exceeds the discount rate of 10%. As a result, the geometric series in the
constant growth model does not converge. These larger multiplier values indicate that
reasonable values for the serial correlation coefficient and the variance on the growth
rate process can quickly make reasonable estimates of the discount rate too low to
determine a finite price. Since prices obviously exist this in turn implies that the
standard application of the constant growth model can seriously underestimate equity
costs.

An interesting implication of these results is that there may be nothing wrong with
forecasting that corporate profits and cash flows can grow at a rate greater than the
expected growth rate of the economy in perpetuity. In turn, it implies that the constraint
imposed by aggregate profits, etc., in relation to GDP is not as obvious as it appears to be.
This is because much of the variation in firm level profits consists of a zero sum game, that
nets out at the aggregate level. This in turn may render much of the discussion of the size
of the equity risk premium derived from models like the constant growth model, applied to
aggregate values for the S&P500, that do not take into account parameter uncertainty, of
questionable value.

4. Simulation of the model

The general model is very easy to simulate and has the added advantage of showing
how the estimation bias changes on a year by year basis. Consistent with the earlier
discussion, a long-run growth rate of 5% and a discount rate of 10% is assumed with an
initial cash flow of $1. The constant growth model then implies a value of $21. Quattro
Pro was used to simulate 100 “years” of annual cash flows 1000 times from a normal
distribution with an exact mean of zero and an exact standard deviation of 10% for each
year. The same random numbers were used in all the simulations to preserve consistency.
Since only 100 years of cash flows were generated, the theoretical and simulated value
of the expected cash flows without any serial correlation were both $20.80, the
difference of $0.20 representing the present value of cash flows from year 101 to
infinity.
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Our interest focuses on the bias in estimating the expected cash flow. What is of
interest, for example, is the covariance term in Eq. (9). However, this will change with the
mean of the expected cash flow. For this reason, I rewrite Eq. (9) as follows

E[Gs) = E{CZ}(I +g+Cov(~E%—2T,g3)) (16)

the estimation bias for each period is then the covariance of the standardized prior cash
flow with the contemporaneous growth rate where the standardization is achieved by
dividing by the expected cash flow. In the simulation for each year, 1000 values are
calculated for the growth rate which is then used to calculate 1000 values for the cash flow.
The covariance in Eq. (16) can then be calculated each year from the 1000 simulated
variables for the growth rate and the prior period’s standardized cash flow.

For the base case with no serial correlation, Fig. 1 indicates the covariance expressed in
terms of basis points. Without serial correlation, there is no bias in using the expected

the covariance terms is zero. However, since the uncertamty in the cash ﬂow and the
growth rate both increase across time, the estimated value of the covariance becomes
increasingly more volatile around the mean of zero. The graph’s value is simply to show
the random sampling error introduced by the particular 100,000 random numbers used.

Fig. 2 indicates the covariance term using a serial correlation coefficient of 0.4 and a
standard deviation of the growth rate of 0.1. Unlike the earlier figure, there is no
fluctuation around zero. Instead, the covariance builds rapidly to around 0.5, and then
becomes increasingly more volatile However, the mean continues to differ significantly
from zero.

The “correct” approach is to calculate each period’s true expected cash flows, using the
covariance term in Eq. (13), graphed above. This, however, necessitates varying the
growth rate period by period, even though the expected growth rate is a constant 5%. The
adjusted growth rate from Eq. (13) is simply an approximation for the present value of
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Fig. 1. Covariance: growth with lagged cash flow.
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Fig. 2. Covariance: growth with lagged cash flow.

these deviations from the expected growth rate. For our example, the adjusted growth rate
is an extra 69 basis points, which can then be inserted into the constant growth model. If
this is done the value of the first 100 years of cash flows is $24.1 versus the simulation
value of $24.3 and the constant “certainty’ growth value of $20.80. The simulation, thus,
supports the prior development of the adjusted growth rate to indicate that failing to
account for the uncertainty in the future growth rate in the presence of serial correlation
undervalues the expected future cash flows, with our simulation this undervaluation is
about 10%.

The adjusted growth rate approximation worsens as the serial correlation coefficient
increases. The following table indicates that with a serial correlation coefficient of 0.1,
both the simulation value and that obtained by using the adjusted growth rate are $21.3, as
compared to the certainty estimate of $20.80. However, for a serial correlation coefficient
of 0.7, the simulation estimate of value of $63.8 is half as much again as that estimated
using the adjusted growth rate and three times that of the certainty estimate, which remains
at $20.8. The reason for the growing discrepancy is that as the serial correlation coefficient
increases, so too does the volatility of the growth rate, which causes the distribution of the
cash flow to become increasingly nonnormal. This makes the Steven’s approximation less
useful.

Serial correlation Simulation Adjusted growth rate
0 20.8 20.8
0.1 213 21.3
0.2 219 21.9
0.3 22.8 22.8
0.4 243 23.5
0.5 27.1 262
0.6 34.1 30.2

0.7 63.8 40.4
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So far, the analysis has focussed on the valuation of the expected future cash flows
using an externally derived discount rate. However, in practice the constant growth model,
in particular, is used as much for estimating discount rates as it is for valuation.
Incorporating parameter uncertainty then simply involves reversing the valuation equation
and solving for the discount rate, where the cash flows are just the dividends received by
the investor,

2
do (1 +2 + 7=iz) P

K =
Py (I-(1+g)p

(17)

Suppose the dividend is a dollar and the stock price $35 and the expected growth rate
5%. The certainty DCF model would estimate the investor’s discount rate as a 3%
expected dividend yield and a 5% growth rate or 8%. However, the expected stream of
dividends is underestimated since the effecis of serial correlation are not taken into
account. In this case, the discount rate is higher, since a higher rate is needed to discount
the higher stream of expected cash flows back to the same $35 price.

If we use the same parameter values as before, the correct discount rates are

Variance Serial Correlation

0.2 0.4 0.6
0.0025 8.06 8.18 8.42
0.01 8.26 8.71 9.67
0.04 9.04 10.83 14.67

These estimates largely just capture the increased growth rate estimates. However, they
indicate that the bias in estimating the equity cost for low serial correlation coefficient
firms is relatively small. However, as before as cither the serial correlation coefficient or
the variance in the growth rate increases, there is a significant increase in the true equity
cost estimate. For the risky firm with a 20% standard deviation and a serial correlation
coefficient of 0.6, the equity cost is 83% higher at 14.67%.

5. Empirical estimates
Serial correlation is a fact of life in most economic series. For example, using data on

the earnings and dividends per share from the Toronto Stock Exchange 300 index gave the
following estimates for Eq. (7)

Long-tun g p R? (%) Standard deviation
o2 7
Dividends 0.049 0.51 24.4 0.086 0.0714

Earnings 0.006 0.54 22.3 0.262 0.235
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The standard deviation of the error term for the aggregate dividend process is 7.14%,
which causes an overall standard deviation for the dividend growth rate of 8.6%. The
dividend growth rate in aggregate has a serial correlation coefficient of 0.51 and the
estimated long-run dividend growth rate is 4.9%. If the aggregate dividends are forecast
using a 5.0% long-run expected growth rate, it would significantly underestimate the
actual growth rate in the expected dividend stream which by Eq. (13) has an adjusted
growth rate 56 basis points higher at 5.56%.

The standard deviation of the error term for the aggregate earnings per share growth rate is
23.5% or 26.2% for the overall growth rate. This 23.5% standard deviation is considerably
larger than the 10% assumed in the simulation, while that for the dividend process is slightly
smaller. However, the serial correlation in the earnings growth rate is almost the same at
0.54. Interestingly, the estimate for the long-run earnings growth rate is only 0.6%, reflecting
the ending date of 1992, which was in the depths of the recession as Canadian companies
went through a wrenching adjustment to free trade with the US during a normal cyclical
downturn.* Inserting the serial correlation coefficient and standard deviation into a long-run
5% growth rate increases the growth rate in expected earnings by 6.9—11.9%.

Looking at the aggregate empirical data, what is clear is the greater instability of
aggregate earnings than dividends. This is due to the tendency of corporations to smooth
their dividends as first noted by Lintner (1956). With the same serial correlation coefficient,
the earnings per share are three times as volatile, meaning that the growth rate in earnings per
share, all else constant, will be three times as large.” In estimating growth rates, analysts
frequently use earnings, as well as dividend growth rates, as proxies for the long-run growth
rate. However, what the simulation and empirical data show is that expected dividends and
earnings per share can grow at different rates due to the greater instability of earnings than
dividends. Miller and Modigliani (1961) showed that valuing a firm by discounting
dividends, earnings and cash flow should all give the same value as long as carnings and
cash flow are correctly defined. However, what the above points out is that to achieve this, in
the face of Lintner style dividend smoothing, may require the use of different discount rates.

The empirical data and simulation also show that for two firms with the same long-run
growth rate the “risky” firms’ expected dividends/earnings/cash flow will grow at a
greater rate than a less risky one, all else constant. Moreover, this rate can significantly
exceed the long-run growth rate in the economy. As a result, the familiar constraint that the
firm can not grow in perpetuity at say 8%, while the economy grows at 5%, since it
eventually will become the economy, may be wrong.® Quite the reverse, risky firms
expected dividends/earnings and cash flow, etc., must be expected to grow significantly
more than the expected growth rate of the economy in perpetuity. When these growth rates

* The 1992~ 1994 recession was much more severe in Canada than the US due to the free trade adjustment.
During this period, aggregate corporate profits were close to zero.

* If earnings grow by either +100% or —50% and dividends by either +50% or — 33.3%, the expected
arithmetic growth rate is +25% for earnings and +8.33% for dividends, but the compound growth rate
(geometric) is zero for both. The different arithmetic growth rates have the same geometric growth rates, so that
over time earnings and dividends can expect to grow at different rates.

® This constraint better applies to the compound growth rate, not the arithmetic or per period long run growth
rate or the growth rate in expected dividends or earnings. However, there is still an implicit constraint that arises
as a result of a series of positive growth rates.
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are serially correlated, the dividends and earnings can be expected to grow by several
orders of magnitude greater than the economy’s growth rate and as a result have to be
discounted at much higher rates to achieve the same market value.

Section 4 showed that assuming serially correlated growth rates can introduce
significant changes in the forecast expected cash flows. As a result, using the DCF model
without taking this into account will significantly underestimate values and discount rates.
This applies whether the cash flows that are being estimated are from a constant growth or
any other multistage growth model, since what is important is not the expected growth
rate, but the serial correlation in the growth rate. Further, these comments apply to any
discounting model, whether it is based on dividends, earnings or cash flow and whether it
is an investor based or corporate based model.

For a variety of reasons, firms smooth their dividends, generally by using short term
borrowing. In this case, the uncertainty and serial correlation in a firm’s future dividends is
generally less than in a firm’s earnings, which again are less than in their free cash flows.
Given this observation, there is no reason to believe that parameter uncertainty is the same
for dividends, earnings and cash flow, in which case even though value may be the same
there is no reason to believe that the same discount rate should be used to discount all
three. How the discount rate should vary when discounting dividends, eamings and cash
flow will depend on the firm’s empirical dividend policy. Investigating the implications of
dividend policy on parameter uncertainty is a topic of current research.

Generally, in valuation, we ignore parameter uncertainty and just forecast expected
values based on current values and some forecast expected growth rate. This- Ppaper ‘has:

o This-in-tum-implies that valuations-and-equity*
viased. low without ing the adjustments.for, serial. correlation-developed-in--
this-paper-Finally, it explains why two firms with the same dividend yield and expected
growth rate can have different equity costs, and why in general there may be no simple
relation between the perpetual long-run growth rate in a firm’s expected cash flows and the
expected growth rate in the economy.
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