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Numerous studies have examined the mean/variance efficiency of various market proxies
by employing sample parameters and have concluded that these proxies are inefficient.
These findings cast doubt about the capital asset pricing model (CAPM), one of the cor-
nerstones of modern finance. This study adopts a reverse-engineering approach: given a
particular market proxy, we find the minimal variations in sample parameters required to
ensure that the proxy is mean/variance efficient. Surprisingly, slight variations in parame-
ters, well within estimation error bounds, suffice to make the proxy efficient. Thus, many
conventional market proxies could be perfectly consistent with the CAPM and useful for
estimating expected returns. (JEL G11, G12)

Testing the capital asset pricing model (CAPM) of Sharpe (1964) and Lintner
(1965) is equivalent to testing the mean/variance efficiency of the market port-
folio (see Roll 1977 and Ross 1977). The efficiency of the market portfolio has
very important implications regarding the debate over passive versus active
investing and regarding the use of betas for pricing risky assets. Many stud-
ies that have examined the mean/variance efficiency of various market proxies
have found that these proxies are inefficient and typically far from the effi-
cient frontier.1 Moreover, portfolios on the efficient frontier typically involve
many short positions,2 which implies, of course, that the positive-by-definition
market portfolio cannot be efficient. These results hold both with sample pa-
rameters and with parameters adjusted by various shrinkage methods.3 This
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1 See, for example, Gibbons (1982), Jobson and Korkie (1982), Shanken (1985), Kandel and Stambaugh (1987),
Gibbons, Ross, and Shanken (1989), Zhou (1991), and MacKinlay and Richardson (1991).

2 As shown, for example, by Levy (1983), Green and Hollifield (1992), and Jagannathan and Ma (2003).

3 Jagannathan and Ma (2003) show that constraining the weights of the minimum-variance portfolio to be non-
negative is equivalent to modifying the covariance matrix in a way which typically shrinks the large elements
of the covariance matrix. When this shrinkage is employed, however, only a small number of assets are held in
positive proportions (and the rest have weights of zero). This is, again, not an encouraging result for the hope of
finding an efficient market portfolio by employing shrinkage techniques.
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The Market Portfolio

constitutes a very dark cloud hanging over one of the most fundamental mod-
els of modern finance. In light of this evidence, should the CAPM be taken
seriously or is it just a pedagogical tool for finance classes, grossly inconsis-
tent with the empirical evidence?

This article shows that a small variation of the sample parameters, well
within their estimation error bounds, can make a typical market proxy effi-
cient. Thus, the empirically measured return parameters and the market port-
folio weights are perfectly consistent with the CAPM using a typical proxy.
How is this possible, and how can it be reconciled with the many previ-
ous studies that have shown that the market proxy is inefficient? While most
studies suggest various variations of the return parameters relative to the
sample parameters and check whether these variations lead to an efficient
market proxy, we take a reverse approach: We first require that the return
parameters ensure that the market proxy is efficient. Given this requirement,
we look for parameters that are as “close” as possible to their sample coun-
terparts. Surprisingly, parameters that make the market proxy efficient can
be found very close to the sample parameters. Hence, minor changes in es-
timation error reverse previous negative and disappointing findings for the
CAPM.

We hasten to add that the efficiency, or lack thereof, for a market proxy
can never be a definitive test of the macro-CAPM, which requires the market
portfolio of all assets, including real estate, human capital, etc. Nonetheless,
it would be reassuring if typical proxies were less inefficient than previously
believed.

This article is organized as follows. The next section introduces the meth-
ods employed. Section 2 describes the data and the results. Section 3 pro-
vides a detailed comparison of our results with the classical results in
the literature. Section 4 discusses implications for asset pricing. Section 5
concludes.

1. Methods

Given a market proxy, m, we look for the “minimal” variation of sample pa-
rameters that would make it mean/variance efficient. Denote the vector of mar-
ket proxy portfolio weights by xm and denote the vector of sample average
returns and the vector of sample standard deviations by μsam and σ sam , re-
spectively. Csam denotes the sample covariance matrix, and ρsam denotes the
sample correlation matrix.

The objectives being sought are an expected return vector μ and a co-
variance matrix C that on the one hand make portfolio m mean/variance
efficient and on the other hand are as close as possible to their sample coun-
terparts. For simplicity, when considering the covariance matrix C , we allow
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variation only in the standard deviations, while retaining the same sample
correlations:

⎡
⎢⎢⎢⎢⎣ C

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

σ1 0 · · · 0
... σ2

. . .
...

0
0 · · · 0 σN

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣ ρsam

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

σ1 0 · · · 0
... σ2

. . .
...

0
0 · · · 0 σN

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(1)
Allowing the correlations to vary as well introduces technical difficulties, but
can only make the results stronger, as it allows more degrees of freedom in the
optimization procedure described below.

In order to obtain the parameters (μ, σ ) that are “closest” to their sample
counterparts (μsam, σ sam), we define the following distance measure D be-
tween any parameter set (μ, σ ) and the sample parameter set:

D
(
(μ, σ ), (μ, σ )sam)≡

√√√√α
1

N

N∑
i=1

(
μi −μsam

i

σ sam
i

)2

+(1−α)
1

N

N∑
i=1

(
σi −σ sam

i

σ sam
i

)2

,

(2)

where N is the number of assets, and 0 ≤ α ≤ 1 is a parameter determining
the relative weight assigned to deviations of the means relative to deviations
of the standard deviations. Recall that the larger the standard deviation of a
given asset’s returns, the larger the statistical errors involved in estimating
this asset’s parameters, and the larger the confidence intervals for these pa-
rameters. This is the rationale for dividing the deviations in Equation (2) by
σ sam

i —the resulting distance measure “punishes” deviations in the parameters
of assets with low standard deviations more heavily than similar deviations
in assets with higher standard deviations. The ultimate test is whether a set
of parameters (μ, σ ) can be considered as “reasonably close” to the sample
parameters: for example, one can look at the proportion of parameters that
deviate from the standard estimation error bounds around their sample coun-
terparts and the size of those deviations. Intuitively, a parameter set can be
considered “reasonably close” when 95% or more of the parameters are within
the 95% confidence intervals of the sample parameters (below we also employ
more formal multivariate tests). The choice of the distance measure D in Equa-
tion (2) and its minimization in the optimization problem described below are
designed to minimize the statistical significance of the deviations between μ

and σ and their sample counterparts, but we should stress that the statistical
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The Market Portfolio

conclusion regarding the compatibility of the parameters (μ, σ ) with the sam-
ple parameters is independent of the choice of D.

To find the set of parameters (μ, σ ) that make the proxy m mean/variance
efficient and are closest to the sample parameters, we solve the following opti-
mization problem:

Optimization Problem 1:

Minimize D
(
(μ, σ ) , (μ, σ )sam)

Subject to:

(i)

⎡
⎢⎢⎢⎢⎢⎢⎣

σ1 0 · · · 0
... σ2

. . .
...

0
0 · · · 0 σN

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣ ρsam

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

σ1 0 · · · 0
... σ2

. . .
...

0
0 · · · 0 σN

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

xm1
xm2
...

xm N

⎤
⎥⎥⎥⎥⎥⎦

= q ·

⎡
⎢⎢⎢⎢⎢⎣

μ1 − rz

μ2 − rz
...

μN − rz

⎤
⎥⎥⎥⎥⎥⎦

,

where q > 0 is the constant of proportionality, and rz is the zero-beta rate.
Both q and rz are free variables in the optimization. Thus, there are 2N + 2
variables in the optimization: Nμ’s, Nσ ’s, q, and rz . Any set of these 2N +
2 parameters satisfying (i) makes the proxy portfolio mean/variance efficient
(see, for example, Roll 1977). We are looking for the set of parameter vectors
(μ∗, σ ∗) that satisfy this mean/variance efficiency condition and are closest to
the sample parameters.4

Our approach differs from those employed in previous studies, such as
Black, Jensen, and Scholes (1972) and Gibbons, Ross, and Shanken (1989), in
two main regards. First, we are not required to assume the existence of a risk-
free asset. Second, and more importantly, the standard approach looks at the
adjustment to the empirical average returns required to make the market proxy
efficient (i.e., the stocks’ alphas) and asks whether these adjustments are sta-
tistically plausible. In contrast, we are looking at simultaneous adjustments to
the average returns and the standard deviations (and could, in principle, include
adjustments to the correlations as well). Thus, while the standard approach ex-
amines the statistical plausibility of a single vector of alphas, we examine a
multitude of vectors of average return and standard deviation adjustments. This
allows us many more degrees of freedom relative to the standard approach and
explains why we find that only small adjustments are required to make the

4 This optimization problem is similar in spirit to Sharpe’s (2007) “reverse optimization” problem. Levy (2007)
employs an analogous technique to find mean/variance efficient portfolios that have all-positive weights. This
approach was first used in a very innovative paper by Best and Grauer (1985).
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market proxy efficient. In Section 3, we discuss the relation of our results to
the previous literature in more detail.

In some situations, one may have beliefs about the proxy portfolio’s ex ante
mean and standard deviation and would like to find the set of parameters that
are closest to the sample parameters and at the same time ensure that the proxy
portfolio is mean/variance efficient with the prespecified mean and standard
deviation. Denoting the prespecified mean and standard deviation by μ0 and
σ0, respectively, the optimization problem solved in this case is:

Optimization Problem 2:

Minimize D
(
(μ, σ ) , (μ, σ )sam)

Subject to:

(i)

⎡
⎢⎢⎢⎢⎢⎢⎣

σ1 0 · · · 0
... σ2

. . .
...

0
0 · · · 0 σN

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣ ρsam

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

σ1 0 · · · 0
... σ2

. . .
...

0
0 · · · 0 σN

⎤
⎥⎥⎥⎥⎥⎥⎦

xm = q ·

⎡
⎢⎢⎢⎢⎢⎣

μ1 − rz

μ2 − rz
...

μN − rz

⎤
⎥⎥⎥⎥⎥⎦

(ii) x ′
mμ = μ0

(iii) x ′
m

⎡
⎢⎢⎢⎢⎢⎢⎣

σ1 0 · · · 0
... σ2

. . .
...

0
0 · · · 0 σN

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣ ρsam

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

σ1 0 · · · 0
... σ2

. . .
...

0
0 · · · 0 σN

⎤
⎥⎥⎥⎥⎥⎥⎦

xm = σ 2
0 ,

where, again, xm is the vector of a given proxy’s portfolio weights.
The next section presents solutions to these optimization problems with em-

pirical equity data in order to ascertain how large the deviations from the sam-
ple parameters must be in order to ensure mean/variance efficiency.

2. Data and Results

Our demonstration sample consists of the one hundred largest stocks in the
U.S. market (according to December 2006 market capitalizations), which have
complete monthly return records over the period January 1997 to December
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Table 1
The sample parameters and closest parameters ensuring that the market proxy is mean/variance
efficient

(1) (2) (3) (4) (5) (6) (7)
Stock μsam

i μ∗
i σ sam

i σ∗
i t-Value (σ∗

i )2/ (σ sam
i )2

(i) μ∗
i (The 95% confidence

interval for this value is
[0.790–1.319])

1 0.024 0.018 0.165 0.167 −0.423 1.019
2 0.021 0.019 0.115 0.115 −0.170 1.003
3 0.011 0.017 0.106 0.104 0.588 0.963
4 0.029 0.023 0.158 0.160 −0.444 1.028
5 0.039 0.022 0.150 0.156 −1.228 1.077
6 0.005 0.011 0.075 0.073 0.952 0.953
7 0.007 0.013 0.072 0.070 0.938 0.942
8 0.012 0.010 0.051 0.052 −0.433 1.028
9 0.013 0.015 0.070 0.069 0.286 0.978
10 0.016 0.018 0.099 0.098 0.185 0.986
11 0.010 0.013 0.067 0.066 0.344 0.977
12 0.016 0.009 0.092 0.093 −0.819 1.025
13 0.015 0.011 0.071 0.072 −0.627 1.035
14 0.019 0.012 0.100 0.102 −0.702 1.034
15 0.011 0.011 0.061 0.061 −0.029 1.006
16 0.032 0.014 0.159 0.162 −1.215 1.044
17 0.023 0.025 0.158 0.157 0.145 0.990
18 0.024 0.021 0.146 0.147 −0.232 1.016
19 0.011 0.012 0.086 0.085 0.199 0.988
20 0.007 0.010 0.067 0.066 0.477 0.979
21 0.011 0.011 0.065 0.065 0.082 0.996
22 0.018 0.016 0.080 0.081 −0.225 1.018
23 0.012 0.008 0.067 0.068 −0.652 1.023
24 0.013 0.004 0.059 0.059 −1.533 0.995
25 0.017 0.014 0.088 0.088 −0.361 1.021
26 0.014 0.013 0.081 0.082 −0.128 1.007
27 0.006 0.012 0.077 0.075 0.810 0.955
28 0.018 0.011 0.077 0.078 −1.058 1.044
29 0.010 0.012 0.087 0.086 0.276 0.989
30 0.010 0.010 0.065 0.064 0.055 0.999

For the sake of brevity, this table reports only thirty of the one hundred stocks (the complete table is given in
the Appendix). The sample parameters are given in the second and fourth columns. The expected returns and
standard deviations, which are closest to these parameters and ensure that the market proxy is efficient (i.e., the
parameters that solve Optimization Problem 1), are given in columns 3 and 5. The t-values for the expected
returns are given in column 6, which shows that none of these values are significant at the 95% level (this is
also true for the seventy other stocks not shown in the table). Column 7 reports the ratio between the optimized
variances (σ∗)2 and the sample variances. The 95% confidence interval for this ratio is [0.790–1.319] (see
footnote 5). All of the ratios in the table, as well as the ratios for all other seventy stocks not shown here, fall
well within this interval. These results are obtained with a value of α = 0.75 in the minimized distance measure
D (see Equation (2)). Higher values of α reduce the variation in the expected returns (at the expense of increasing
the deviations in the standard deviations).

2006 (120 return observations). Columns 2 and 4 in table 1 report the sample
average returns and standard deviations for thirty of these stocks (the complete
information for all one hundred stocks is given in table A1 in the Appendix).
The average sample correlation is 0.24.
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Following previous research (e.g., Stambaugh 1982), we examine a market
proxy whose weights are market capitalizations, in this case of the one hundred
stocks as of December 2006,

xmi = market cap of f irm i
100∑
j=1

market cap of f irm j

.

The proxy portfolio and the sample mean/variance frontier are shown in fig-
ure 2 by the triangle and thin line, respectively. As the figure illustrates, the
proxy portfolio is far from the efficient frontier when the sample parameters
are employed. This is consistent with previous studies.

To solve Optimization Problem 1 numerically, we implement Matlab’s fmin-
con function, which is based on the interior-reflective Newton method and the
sequential quadratic programming method. The solution (μ∗, σ ∗) is given in
columns 3 and 5 of table 1.

2.1 Simple tests of significance between sample and adjusted parameters
t-values for the adjusted expected returns μ∗are given in column 6 of table 1.
They reveal that the difference between the sample average return, μsam

i , and
μ∗

i is nonsignificant at the 95% level for all stocks (this is true not only for
the thirty stocks shown in the table but also for the other seventy stocks as
well). Column 7 provides the ratio

(
σ ∗

i

)2/(
σ sam

i

)2 for each stock. The 95%
confidence interval for this ratio is the range [0.790–1.319].5 The values in
column 7 reveal that for all stocks, the ratio

(
σ ∗

i

)2/(
σ sam

i

)2 is well within this
range (and this is also true for the seventy stocks not shown in the table). Thus,
the solution (μ∗, σ ∗) to the optimization problem is very close to the sample
parameter set because no parameters is significantly different from its sample
counterpart.

More formally, as we have 2N = 200 parameters, we are simultaneously
testing two hundred hypotheses (each stating that the given parameter is not

5 The ratio (n−1)s2

σ2 is distributed according to the χ2
n−1distribution, where σ2 is the population variance, s2 is the

sample variance (or (σ sam )2 in the notation used in this article), and n is the number of observations. We have
120 monthly return observations, hence n= 120. As we are looking for the 95% confidence interval for s2/σ2,

we need to find the critical values c1 and c2 for which P
(
χ2

119 > c1

)
= 0.025, and P

(
χ2

119 < c2

)
= 0.025.

For large n,
√

2χ2
n − √

2n − 1 can be approximated by the standard normal distribution. Thus, the critical

values c1 and c2 satisfy
√

2c1 − √
2 · 119 − 1 = 1.96 and

√
2c2 − √

2 · 119 − 1 = −1.96, which yield c1 =
150.6 and c2 = 90.2. Thus, the 95% confidence interval for s2/σ2is given by 90.2 < 119 · s2/σ2 < 150.6 or
0.758 < s2/σ2 < 1.266. Alternatively, this range can be also stated as 0.790 < σ2/s2 < 1.319.
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The Market Portfolio

different than its sample counterpart at the 5% significance level). The
Bonferroni (1935) test states that we should reject the multiple-comparison
hypothesis at the 5% level if any one of the parameters is significantly differ-
ent than its sample counterpart at the (5/200)% level (see also Miller 1991).
As none of our parameters are significantly different at the 5% level, of course,
none is significant at the much lower (5/200)% level, and we cannot reject the
multiple comparison hypothesis.

2.2 Multivariate tests of significance between sample and adjusted
parameters

The univariate t-tests reported above and the Bonferroni multiple comparisons
test rely on a questionable assumption, viz., that the estimation errors are inde-
pendent across parameters. Because all sample estimates were obtained with
data spanning the same calendar time period, some interdependence in estima-
tion errors would not be all that surprising. To ensure that such a possibility did
not seriously affect our inference that the subject portfolio was not statistically
significantly off the efficient frontier, we carried out two further tests that take
account of possible estimate dependence.

The first test assumes that the individual stock returns are drawn from a mul-
tivariate normal distribution. In this case, individual sample mean returns and
the sample covariance matrix are jointly distributed as a noncentral Wishart (cf.
Johnson and Kotz 1972, p. 175). To test a particular hypothesis about the true
population mean returns and covariance matrix, we can employ the likelihood
ratio, whose general form is

n · log

{ |S|
|�| − N + trace

(
�−1 (S + (μ − x̄) (μ − x̄) ’)

)}
,

where n is the number of time periods; N is the number of stocks; S and x̄ are
the sample covariance matrix and vector of sample mean returns, respectively;
and � and μ are the corresponding hypothesized values.

Because our adjusted means and standard deviations are the hypothesized
values, the likelihood ratio above can be calculated after making the follow-
ing substitutions: μ = μ∗, � = diag(σ ∗)ρsamdiag(σ ∗), x̄ = μsam , and S =
diag(σ sam)ρsamdiag(σ sam), where diag(z) is a diagonal matrix with the vec-
tor z along the diagonal and zeroes off the diagonal. (The sample correlation
matrix ρsam is used in calculating � and S, because our optimization adjusted
only the standard deviations while holding constant the correlations.)

In the general case (with unrestricted correlations), the likelihood ratio
is asymptotically distributed as chi-square with N + N (N + 1)/2 degrees
of freedom. However, in our particular application, with unaltered correla-
tions, there are only 2N degrees of freedom (for N means and N standard
deviations).
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The computed value for this likelihood ratio turns out to be 156.8, which
is the 0.011 fractile of the chi-square distribution with two hundred degrees
of freedom. Hence, one cannot reject the hypothesis that the sample means
and standard deviations as a group of possibly correlated parameters are not
significantly different from the group of their adjusted counterparts.6

Most asset returns, including those used here, exhibit thick tails relative to
the normal distribution. Consequently, the sample means and standard devia-
tions may not conform all that well to a noncentral Wishart distribution. We
therefore decided to conduct one additional test using the bootstrap, which
makes no distributional assumption but merely resamples from the original
observations.

To carry out the bootstrap, we first adjust the empirical T × N return ma-
trix (T monthly returns for N stocks) to create a “true” return matrix with
parameters μ∗ and σ ∗. Then, we resample randomly from this return matrix
and calculate the parameters (μBS, σ BS) obtained in each random draw of T
periods. For each draw, a “distance” is calculated between (μBS, σ BS) and
(μ∗, σ ∗) and compared with the distance between (μsam, σ sam) and (μ∗, σ ∗).
If the bootstrap distance exceeds the original sample distance in a large frac-
tion of cases, one can conclude that the sample and adjusted parameters are
reasonably close.

Below are the step-by-step details:

1. The sample returns, ri,t , are adjusted to create returns with the desired
parameters (μ∗, σ ∗) by the simple linear transformation r∗

i,t = ai + biri,t ,
with bi = σ ∗/σ sam and ai = μ∗ − biμ

sam . (Obviously, the correlations
are unaltered.) The adjusted returns are arranged in a matrix with T
columns and N rows.

2. From this (T × N ) matrix, T columns are drawn randomly with replace-
ment, thus maintaining the underlying cross-sectional dependence,7 and
(μBS, σ BS) are computed for this (re)sample.

3. The “distance” between the sample parameters (μBS, σ BS) and the true
parameters (μ∗, σ ∗) is computed as the simple Euclidean distance8:

d ≡
√√√√ N∑

i=1

(
μBS

i − μ∗
i

)2 +
N∑

i=1

(
σ BS

i − σ ∗
i

)2
.

6 Since the log likelihood ratio is only asymptotically chi-square, one cannot be certain that the sample size is
large enough for a satisfactory convergence, though two hundred degrees of freedom is usually thought to be
sufficient.

7 The returns are assumed to be independent over time.

8 One could employ various other more sophisticated distance measures (e.g., the distance D in Equation (2)). As
will become evident below, the results are very strong, and they are robust to the distance measure employed.
Obviously, we employ the same measure D for the distance between (μsam , σ sam ) and (μ∗, σ∗) and between
(μBS , σ BS ) and (μ∗, σ∗).
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4. This distance is compared with the corresponding distance between the
parameters (μsam, σ sam) and (μ∗, σ ∗).

The distance between (μsam, σ sam) and (μ∗, σ ∗) is 0.06. Of 10,000 resam-
pled sets of T observations, all had a distance larger than this value. Figure 1
shows the distribution of the distance d obtained with the bootstrap.

It may seem suspicious that none of the bootstrap distances were smaller
than the distance between the sample and adjusted values, but remember that
the two types of distances are quite different in character. The latter, the dis-
tance between (sam) and (*), emerges from a portfolio optimization, whereas
the former, the distance between (*) and (BS), is entirely attributable to statis-
tical sampling error. There is no theoretical reason why one cannot be much
smaller (or larger) than the other.

To think of it another way, suppose we had the exact same (sam) parameter
values and therefore the same (*) values as well, but these were computed from
240 monthly returns rather than 120. In this case, the BS/* distances become
smaller but the sam/* distance is unaltered. We actually redid the bootstrap
using 240 observations per sample and found that twelve of 10,000 BS/* dis-
tances were smaller than the sam/* distance. This is still a very small number,
but it is not zero, and it illustrates the fundamental difference between the two
procedures.

Figure 1
Probability distribution of Euclidean distance between bootstrapped and optimally adjusted parameters
The optimally adjusted parameters (means and standard deviations) are sufficient to make the proxy market
portfolio lie on the (adjusted) mean/variance efficient frontier. The Euclidean distance between the adjusted
parameters and the original sample parameters is 0.06. Ten thousand resampled sets of returns were drawn, and
the Euclidean distance is calculated for each set. As shown above, all resampled distances lie above the sample
distance.
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Overall, it seems safe to conclude that statistically insignificant parameter
adjustments can render our proxy portfolio efficient, even taking account of
cross-sectional dependence in the underlying stock returns.

2.3 Interpretation of the results
To confirm that the parameters (μ∗, σ ∗) make the proxy portfolio
mean/variance efficient, one can examine the efficient frontier and the loca-
tion of the proxy portfolio in the mean-standard-deviation plane with these
parameters. These are illustrated by the bold line and the star in figure 2. The
figure shows that with the parameters (μ∗, σ ∗), the proxy portfolio lies on the
efficient frontier. It is interesting to note that while the modified parameters
(μ∗, σ ∗) do not have a big impact on the expected return or the standard devi-
ation of the proxy portfolio (the star is located very close to the triangle), they
do have a big effect on the shape of the frontier. Why is the modified frontier
much flatter than the sample frontier?

The explanation can be found in figure 3, which shows the adjustment to
the expected return, μ∗

i − μsam
i , as a function of the sample average return,

μsam
i . The figure reveals that high sample returns tend to get negative cor-

rections
(
μ∗

i < μsam
i

)
, while the opposite holds for low sample returns. Thus,

the cross-sectional variation of μ∗
i is smaller than the cross-sectional variation

of μsam
i , which explains why the frontier is flatter (recall that in the limiting

Figure 2
The efficient frontier and market proxy with the sample and the adjusted return parameters
The thin line curve and the triangle (partly hidden behind the star) show the mean/variance frontier and the
market proxy with the sample parameters. As is typical of other studies, the market proxy is very far from the
efficient frontier when the sample parameters are employed. The bold line and the star show the mean/variance
frontier and the market proxy with the adjusted parameters (μ∗, σ∗). With these parameters, the market proxy
is mean/variance efficient.
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Figure 3
The correction to the estimated expected returns as a function of the sample average return
For stocks with high sample average returns, the correction in the expected return tends to be negative. The
opposite holds for stocks with low sample average returns. Thus, the corrections produced by the solution to the
optimization problem are reminiscent of statistical shrinkage methods.

case where all expected returns are identical, the frontier becomes completely
flat, that is it is a horizontal line). Figure 3 shows that the corrections to the
sample means implied by the optimization are reminiscent of standard statis-
tical shrinkage methods. However, unlike the standard shrinkage methods, the
method employed here ensures that the proxy is mean/variance efficient.9

There is excellent intuition behind such a result when one recalls two facts:
(i) The efficient frontier itself is the result of an optimization, giving the
minimum variance for each level of mean return; and (ii) sample parameter
estimates are equal to true population parameters plus estimation errors. An
efficient frontier computed using sample estimates optimizes with respect to
sampling errors in addition to true parameters, so assets with overestimated
means are likely to be weighted too heavily in frontier portfolios and vice versa
for assets with underestimated means. This suggests that an efficient fron-
tier computed using population parameters, if they were only known, would
fall well inside the frontier computed using sample estimates, at least at most
points. The main exception would be near the global minimum variance port-
folio, whose weights do not depend on mean returns; indeed, such a relation is
exactly what we see depicted in figure 2.

9 One may wonder whether the adjustment μ∗ − μsam is similar for stocks that are relatively highly correlated
with one another. In order to check this, we calculate the sample return correlation for each pair of stocks (i, j)
and examine the relation across pairs between this sample correlation and the difference between the adjustments
of the two stocks, that is (μ∗

i − μsam
i ) − (μ∗

j − μsam
j ). We find no such relation (R2 = 0.009), that is pairs that

are more highly correlated are not more likely to have similar adjustments.
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The implication of these results is quite striking. In contrast to “common
wisdom,” they show that the empirical proxy portfolio parameters are perfectly
consistent with the CAPM if one allows for only slight estimation errors in the
return moments. The reason that most previous studies have found that the
market proxy is inefficient, even when various standard shrinkage methods
have been employed, is that the variation of the parameters necessary to make
the proxy portfolio efficient is very specific. While this variation is in the spirit
of shrinkage, it is specifically designed to ensure the efficiency of the proxy
portfolio, and thus it is fundamentally different than the standard statistical
shrinkage methods.

With the solution (μ∗, σ ∗) to Optimization Problem 1, the proxy portfolio
has a monthly expected return of 1.4% and a standard deviation of 4.6% (see
figure 2), which are very close to its sample values, 1.5% and 4.6%. These val-
ues were produced by the optimization (given the proxy portfolio weights). In
some situations, one may have beliefs about the proxy portfolio’s ex ante return
parameters and may wish to look for solutions that are consistent with these
beliefs. For example, suppose one would like to find vectors μ and σ such that
the proxy portfolio is efficient and has an expected return and a standard devia-
tion of μ0 = 2% and σ0 = 4%, respectively. Are such index values compatible
(in a statistical sense) with the sample parameters and with a mean/variance ef-
ficient index? To answer this question, Optimization Problem 2 can be solved
with μ0 = 2% and σ0 = 4%. We will consider the solution (μ∗, σ ∗) compati-
ble with the sample parameters if 95% or more of the parameters are within the
95% confidence intervals of their sample counterparts, and in addition, the ad-
justed parameters cannot be rejected by the bootstrap test. Of course, μ0 = 2%
and σ0 = 4% are just one example. A more complete picture would scan the
mean/variance plane and map the range of proxy portfolios’ return parameters,
μ0 and σ0, that are compatible with the CAPM and the sample returns and
market proxy weights.

Figure 4 shows the results of this analysis. For each combination of prespec-
ified proxy portfolio parameters (μ0, σ0), we solve Optimization Problem 2.
The points scanned are shown by the circles in the mean/variance plane. If the
resulting optimal parameter set (μ∗, σ ∗) is found to be statistically compatible
with the sample parameters (μsam, σ sam) and with the CAPM (mean/variance
efficiency of the index), the point is marked as a filled circle; if the param-
eters are rejected by the univariate test, the point is surrounded by a trans-
parent circle; if the parameters are rejected by the bootstrap test, the point is
surrounded by a diamond. For example, the point (μ0 = 2%, σ0 = 4%) (in-
dicated by an up arrow in figure 4) is indeed consistent with the sample pa-
rameters and the proxy being efficient. In contrast, the point directly above
(μ0 = 2.5%, σ0 = 4%) is rejected.

We should point out that for a given set of portfolio return parameters
(μ0, σ0), our procedure produces “the best” portfolio with these parameters,
in the sense that this is the portfolio that allows the adjusted parameters to be
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Figure 4
The set of proxy portfolio parameters consistent with mean/variance efficiency and the sample parame-
ters: one hundred stocks
Optimization Problem 2 is solved for a lattice of points on the mean-standard deviation plane (μ0, σ0). The
resulting parameter set (μ∗, σ∗) is considered consistent with the sample parameters by the univariate test if
95% or more of the parameters are within the 95% confidence intervals of their sample counterparts. Points that
are rejected by the univariate test are surrounded by a transparent circle. Points that are rejected by the multi-
variate bootstrap test are surrounded by a transparent diamond. The (μ0, σ0) points that are consistent with the
mean/variance efficiency of the proxy portfolio and with the sample parameters (i.e., they are not rejected by
either of the tests) are indicated by the filled circles. For example, the proxy portfolio can be made mean/variance
efficient with a standard deviation of 4% and a mean return of 2%, but not with a standard deviation of 4% and
a mean return of 2.5%. The figure shows that given a set of sample parameters and proxy portfolio weights, the
proxy portfolio can be made mean/variance efficient with a large range of possible mean and standard deviation
combinations. As in figure 2, the triangle and the star represent the market proxy with the sample parameters
and with the parameters solving Optimization Problem 1, respectively.

as close as possible to the sample parameters. Even if a given point (μ0, σ0)

is in the “dark range” of consistency in the figure, this does not mean that any
portfolio with these parameters is efficient (as there are many different port-
folios with the same (μ0, σ0), and most of them may not be consistent with
the sample returns and mean/variance efficiency). On the other hand, if a point
(μ0, σ0) is in the inconsistent range, there is no portfolio with these parameters
that can be consistent. Thus, there is no portfolio with parameters in the incon-
sistent range that can be moved onto the efficient frontier without violating a
statistical p-value.10

It would be interesting to redo this analysis using indexes with even more
individual assets, but there are technical difficulties. When the number of as-
sets exceeds the number of time series observations, the correlation matrix is

10 It is interesting to note that the range rejected by the univariate test is larger than the range rejected by the
bootstrap test. This is probably because the bootstrap allows for estimation error independence and for departures
from normality (because the t-tests are valid for the Gaussian only).
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Figure 5
The set of proxy portfolio parameters consistent with mean/variance efficiency and the sample parame-
ters: fifty stocks
This figure is the same as figure 4, but it is constructed with only the fifty largest stocks (rather than one hun-
dred). Again, a wide range of (μ0, σ0) is consistent with the efficiency of the market proxy. The area of a polygon
drawn through the outer consistent points is an approximation to the range of consistency.

Figure 6
The area of admissible proxy portfolio parameters as a function of the number of assets
For each value of N , starting with the largest ten stocks, the area of a consistency polygon is computed analogous
to the one shown in figure 5. This area measures the range of proxy portfolio return parameters consistent with
the CAPM and the given proxy portfolio. This is an approximation of the precise area, because it depends on
a finite set of parameter points in the mean/variance plane. The error bars reflect this possible estimation error.
The figure shows that the area of admissible parameters does not change systematically with the number or the
identity of the stocks included in the market index proxy.
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singular, which produces some instabilities in the optimization problem. We
can, however, partially investigate this issue by varying the number of assets
for N < 100 and looking for any trend in the range of proxy portfolio return
parameters consistent with the CAPM.

For example, repeating the analysis for the fifty largest stocks (instead of the
one hundred) yields the results shown in figure 5. These results are comparable
to those obtained with one hundred stocks in the range of proxy portfolio return
parameters consistent with the CAPM. To investigate in more detail possible
systematic effects of the number of assets, we repeat this analysis for N = 10,
20, . . . , 100 stocks. For each value of N , we measure the area of admissible
proxy portfolio parameters (estimated by the polygon containing the admissi-
ble points; see, for example, the polygon in figure 5). The results are shown in
figure 6. Although the area is an approximation of the precise area of admis-
sible points, because of the discreteness of the points (and as indicated by the
error bars in the figure), figure 6 shows that the area does not seem to change
systematically with the number of assets. Thus, the results seem robust to the
identity of stocks and to the number of stocks contained in any market index
proxy.

3. Detailed Comparison with Previous Results

Our results contradict the prevalent belief that the CAPM is inconsistent with
the sample parameters. To understand better why we cannot reject the CAPM,
in contrast to many previous studies, it is instructive to perform a detailed com-
parison with one of the classic studies considered by many as the most defini-
tive rejection of the CAPM—the study by Gibbons, Ross, and Shanken (1989),
hereafter GRS.

GRS develop an ingenious multivariate test of the CAPM, which has a very
elegant and intuitive graphical interpretation, involving the Sharpe ratios of
the proxy portfolio and the ex post tangency portfolio. Using monthly returns
on twelve industry portfolios during 1926–1982, GRS reject the CAPM at the
1.3% significance level. How can our results be reconciled with this strong
rejection?

First, one should note that the GRS test is quite sensitive to the choice of the
risk-free rate and the length of the sample period. In order to demonstrate this,
we repeat the analysis of GRS for the twelve industry portfolios (the monthly
returns for these portfolios over the period 1926–2008 are taken from Ken
French’s data library11). For a monthly risk-free rate of 0.2%, the GRS test
rejects the CAPM with a p-value of 0.03, consistent with the findings of GRS.
However, the model cannot be rejected for a large range of risk-free rate values.
Figure 7 shows the p-values obtained for different risk-free rates; it reveals that
the CAPM is rejected at the 5% level only if the risk-free rate is below 0.003

11 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html.
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Figure 7
p-values in the GRS test for different values of the risk-free rate
The GRS test is conducted for the twelve industry portfolios and the 990-month sample period of 1926–2008.
While the CAPM can be rejected for very low or very high values of the risk-free rate, it cannot be rejected for
the wide range of (monthly) interest rate values between 0.3% and 1.3%.

(0.3%) or above 0.013 (even with the very long 990-month sample period). If
r f is anywhere in between these two values, the model cannot be rejected.

Next, in order to examine the length of the time series required to reject
the model, we take the value of r f = 0.002 (which yields a p-value of 0.03
for the entire 990-month period of 1926–2008) and check the p-value for dif-
ferent sample sizes. Figure 8 reports the average p-value obtained over all
nonoverlapping subperiods of a given length. The figure shows that approxi-
mately sixty years (about seven hundred months) are required in order to reject
the model.

In light of these observations, it is hardly surprising that we cannot reject the
CAPM: We are using only 120 monthly returns, and our test allows us to pick
the risk-free rate which is “most favorable” for the model.

Note, however, that there is a key difference between the GRS test and the
present approach, a difference that is unrelated to the length of the sample or
the value of the risk-free rate. Our method allows for estimation errors not
only in the average returns but also in the covariances and consequently in the
betas. In order to focus on this effect, which is central to our article, consider a
situation where one can reject the CAPM with the GRS test but cannot reject
when the errors in covariances are taken into account, as in our test.

Following GRS, we take twelve industry portfolios, the entire 990-month
period, and a risk-free rate of 0.002. As mentioned before, in this case, the
GRS test rejects with a p-value of 0.03. Our method leads to a different con-
clusion. We calculate the adjusted parameters by solving Optimization 1 with
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Figure 8
p-values in the GRS test for different sample period lengths
The GRS test is conducted for the twelve industry portfolios taking a monthly risk-free rate of 0.2%. For any
sample period length, we report the average p-value obtained over all nonoverlapping subperiods of this length.
While the CAPM can be rejected for very long sample periods, it cannot be rejected with less than seven hundred
months of data.

rz = 0.002, and the market proxy is taken as the value weighted portfolio of
the twelve industries at December 2008.12 We find that all of the parameters
fall within the 95% confidence intervals of their sample counterparts. As GRS
correctly claim, the appropriate test is a multivariate test, but even with this
in mind, the fact that all the parameters are well within the 95% confidence
intervals is indicative.

Employing the multivariate likelihood ratio test, we obtain a statistic of
16.03, which is in the 0.11 fractile of the chi-square distribution with twenty-
four degrees of freedom. Hence, one cannot reject the hypothesis that the sam-
ple means and standard deviations as a group of possibly correlated parameters
are not significantly different from the group of their adjusted counterparts.

The bootstrap results also support this conclusion. The distance between
(μsam, σ sam) and (μ∗, σ ∗) is 0.0058. Out of 10,000 resampled sets of 990
observations, 96.3% had a distance larger than this value. Thus, we clearly
cannot reject with the bootstrap.

To illustrate graphically the difference between our method and GRS, fig-
ure 9 shows the beta–expected return relationship for the twelve industry
portfolios, with the sample parameters and with the adjusted parameters. The
numbers represent the twelve industry portfolios with the sample parameters,

12 Very similar results are obtained if instead of the December 2008 weights, we calculate the value weighted
portfolio for each month and then take the proxy portfolio weights as the value weighted portfolio weights
averaged over the entire period.
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Figure 9
The SML and the twelve industry portfolios with sample and adjusted parameters
The numbers represent the location of the twelve industry portfolios as calculated with the sample parame-
ters, while the numbers in parentheses represent the location of these same twelve portfolios with the adjusted
parameters. Note that while the standard tests allow for corrections in only the expected returns, our method
also allows for corrections in the standard deviation and therefore betas. Thus, we may have both vertical and
horizontal corrections.

and the numbers in parentheses represent the corresponding portfolios with
the adjusted parameters. While the average return corrections, as employed in
GRS and others, allow for only vertical corrections, our method also allows for
corrections in the covariances (hence the betas) and thus for horizontal correc-
tions.13 Thus, even with a very long sample period (990 months) and a rather
low risk-free rate value (0.2%), the CAPM cannot be rejected when estimation
errors in the standard deviations are taken into account.14

4. Implications for Asset Pricing and Practical Use of the CAPM

The security market line (SML) formula is probably the most widespread
method for estimating the cost of capital and for pricing risky assets. Using
beta and the SML formula for estimating the expected return, rather than em-
ploying the sample average return directly, is usually justified on the basis that

13 This figure was drawn for a value of α = 0.98 in the distance measure (2), in order to emphasize the horizontal
corrections. With lower values of α and a larger number of assets, the horizontal corrections are typically smaller
(see Section 4), but may still be important.

14 Very similar results are obtained when the analysis is performed on portfolios formed based on book-to-market
ratios instead of the industry portfolios. These results are available from the authors upon request.
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the statistical estimation of beta is more stable than that of the average re-
turn. However, when there are questions about how well the SML relationship
holds empirically, there are serious doubts about employing betas for pricing.15

While we cannot prove that the SML relationship holds empirically with the ex
ante parameters, our analysis does provide another reason for employing betas
for estimating the cost of capital.

Suppose that the CAPM holds with the true ex ante parameters (μ∗, σ ∗)
and that the empirically measured parameters are (μsam, σ sam). The true and
sample betas of stock i are given respectively by:

β∗
i =

N∑
j=1

xmjσ
∗
i σ ∗

j ρi j

x ’
mCxm

(3a)

βsam
i =

N∑
j=1

xmjσ
sam
i σ sam

j ρi j

x ’
mCsam xm

, (3b)

where xm denotes the market portfolio weights. The true cost of equity of firm
i is μ∗

i . If one employs the observable βsam
i in the SML formula instead of

the correct β∗
i , how accurate will the resulting cost of capital estimate be? In

other words, how close are βsam
i and β∗

i ? We show that when the number of
assets is large, the difference will typically be small. Figure 10 shows βsam

i
and β∗

i , where the parameter set (μ∗, σ ∗) employed is the solution to Opti-
mization Problem 1. The figure reveals that the difference between βsam

i and
β∗

i is very small. The reason is that both the denominators and the numerators
of Equations (3a) and (3b) are very similar. The variance of the market proxy
is quite close, whether the optimized parameters or the sample parameters are
employed (compare the horizontal location of star and the triangle in figures 3
and 4). As for the covariances in the numerator, note that σ ∗

j ≈ σ sam
j , and

in addition, when the number of assets is large, the deviations tend to cancel
each other out in the summation, as in some cases σ ∗

j > σ sam
j , while in others

σ ∗
j < σ sam

j (see column 7 in table 1).16

15 This is, of course, one of the major debates in finance. See, for example, Reinganum (1981), Levy (1981),
Lakonishok and Shapiro (1986), Fama and French (1992), and Roll and Ross (1994).

16 Figure 10 shows the relation between the βsam
i ’s and the β∗

i ’s when we use a value of α = 0.75 in the distance
measure D (see Equation (2)). When a higher value of α is employed, the μ∗

i ’s are closer to their sample
counterparts, and the σ∗

i ’s are more distant from their sample counterparts. As a result, the differences between
the βsam

i ’s and the β∗
i ’s also increase. Yet, even with a very high value of α = 0.97, with one hundred assets,

the β∗
i ’s are still very close to the βsam

i ’s, with a correlation of 0.96. When the number of assets is smaller, as in
the twelve-asset analysis in Section 3, the differences between the βsam

i ’s and the β∗
i ’s will typically be larger.
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Figure 10
The relation between sample betas and the “true” betas
The “true” parameters are those that solve Optimization Problem 1 and satisfy the CAPM: (μ∗, σ∗). The sample
parameters are (μsam , σ sam ). The true and sample betas are given by Equations (3a) and (3b). The figure shows
that the sample betas are very close to the true betas and thus yield excellent estimates of the expected returns.

Because the market proxy is efficient with the true parameters (μ∗, σ ∗), the
following relationship holds exactly:

μ∗
i = rz + β∗

i (μm − rz), (4)

where rz is the expected return on the zero-beta portfolio for index m. Com-
mon practice substitutes a “riskless” rate, r f , for rz , but this is appropriate
only when f and z have the same mean return. Since βsam

i ≈ β∗
i , employing

the SML with the sample beta, as is commonly done in practice, provides an
excellent estimate for the true expected return (assuming r f = rz):

μ∗
i − [

r f + βsam
i (μsam

m − r f )
] = β∗

i (μ∗
m − r f ) − βsam

i (μsam
m − r f ) ≈ 0.

(5)

The above argument is based on taking the true ex ante parameters as the
(μ∗, σ ∗) vectors solving Optimization Problem 1, that is the parameters en-
suring the CAPM that are closest to the sample parameters. What if, instead,
we take another set of parameters that ensures the efficiency of the proxy and is
consistent with the sample parameters? For example, suppose that we take as
the true parameters those that solve Optimization Problem 2 with μ0 = 2% and
σ0 = 4.25% (see point A in figure 4). It turns out that with these parameters,
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the β∗
i ’s and theβsam

i ’s are still very close—see panel A in figure 11. This is
also true for other points with very different proxy portfolio expected returns
and standard deviations—see panels B, C, and D in figure 11, corresponding
to the points B, C, and D in figure 4.

This is a strong result: if the CAPM holds in a way that is consistent with
the sample parameters, the differences between sample betas and true betas are
going to be small. Thus, if one employs the SML formula for pricing, which
implies that the CAPM holds with the ex ante parameters, one can be confident
about using the sample betas and should not worry about estimation errors in
the betas. This conclusion is reached because we are not just looking at the
statistical estimation error of a single asset’s beta in isolation, as is typically

A B

C D

Figure 11
The relation between sample betas and “true” betas for varying values of the market proxy’s expected
return and volatility
The “true” parameters are those that satisfy the CAPM and solve Optimization Problem 2. Each panel corre-
sponds to a different combination of values of the prespecified expected return and standard deviation of the
proxy portfolio, μ0 and σ0. (The points corresponding to these four panels are indicated by A, B, C, and D,
respectively, in figure 4.) The true and sample betas are given by Equations (3a) and (3b). The figure shows that
with one hundred assets, the sample betas are very close to the true betas and thus yield excellent estimates of
the true expected returns, even when μ0 and σ0 are not close to the values obtained with the sample parameters.
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done, but rather at the error in beta given that the CAPM holds in a way that is
consistent with the sample parameters (μsam, σ sam).

From a practical perspective, because sample betas are quite close to betas
that have been adjusted to render the market proxy mean/variance efficient,

B

A

Figure 12
The SML scatter for sample versus adjusted means and betas
Sample estimates of means and betas for our one hundred stocks are plotted against each other in panel A. Panel
B plots the corresponding adjusted means and betas that are obtained from Optimization Problem 1.

2486

 at U
niversity of T

oronto L
ibrary on O

ctober 25, 2012
http://rfs.oxfordjournals.org/

D
ow

nloaded from
 

http://rfs.oxfordjournals.org/


The Market Portfolio

improved estimates of expected returns can be obtained from sample betas
alone. Sample mean returns should be ignored! To illustrate, figure 12, panel
A, shows the cross-sectional relation between sample mean returns and sample
betas for our one hundred stocks, while figure 12, panel B, shows the analogous
relation for adjusted means and betas. Clearly, the sample means in panel A are
not closely related at all to sample betas, but the adjusted means in panel B are
perfectly related to adjusted betas.17

Consequently, to obtain an improved expected return estimate for any stock,
first calculate the adjusted mean return for the market index proxy and for its
corresponding zero-beta portfolio.18 Plugging these numbers along with the
sample beta (because it is close to the adjusted beta) into the usual CAPM
formula delivers the improved estimate of expected return. Making the market
index proxy mean/variance efficient produces useful betas for many practical
purposes such as estimation of the cost of equity capital for a firm or of the
discount rate for a risky project.

5. Conclusion

Market proxy portfolios are typically very far from the sample efficient fron-
tier. Many studies have tried various adjustments to the sample parameters
to make the market proxy mean/variance efficient, without success. Thus, the
“common wisdom” is that the empirical return parameters and market portfolio
weights are incompatible with the CAPM theory.

In this article, we hope to change that perception. We show that small vari-
ations of the sample parameters, well within the range of estimation error, can
make a typical market proxy mean/variance efficient. While such parameter
variations are reminiscent of “shrinkage,” they differ from those obtained with
the standard statistical shrinkage methods: They are the result of “reverse opti-
mization.” In this reverse optimization, return parameters are derived to make
the market proxy mean/variance efficient while being “close” to their sample
counterparts.

The fact that we find many such parameter sets and the fact that many previ-
ous attempts to vary the return parameters in order to obtain an efficient proxy
were unsuccessful seem to indicate that such parameter sets may be very rare in
parameter space—it is very unlikely to “stumble onto one of them” by coinci-
dence. Yet, the reverse optimization problem delivers them simply and directly.

These findings suggest that the CAPM (i.e., ex ante mean/variance efficiency
of the market index proxy) is consistent with the empirically observed return
parameters and the market proxy portfolio weights. Of course, this does not
constitute a proof of the empirical validity of the model, but it shows that the

17 The slight deviations from linearity in figure 12, panel B, are caused by rounding error.

18 For most proxies, the sample means will be close to the adjusted means.
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model cannot be rejected, in contrast to the widespread belief in our profession.
The intuitive idea that shrinkage corrections should increase the empirical va-
lidity of the CAPM is shown to be valid—with the right corrections, which
are small, the index proxy is perfectly efficient. The analysis also shows that
in this framework, employing the sample betas typically provides an excellent
estimate of the true expected returns.

Appendix

Table A1
The sample parameters and closest parameters ensuring that the market proxy is mean/variance
efficient

(1) (2) (3) (4) (5) (6) (7)
Stock μsam

i μ∗
i σ sam

i σ∗
i t-Value (σ∗

i )2/ (σ sam
i )2

(i) μ∗
i (The 95% confidence

interval for this value is
[0.790–1.319])

1 0.024 0.018 0.165 0.167 −0.423 1.019
2 0.021 0.019 0.115 0.115 −0.170 1.003
3 0.011 0.017 0.106 0.104 0.588 0.963
4 0.029 0.023 0.158 0.160 −0.444 1.028
5 0.039 0.022 0.150 0.156 −1.228 1.077
6 0.005 0.011 0.075 0.073 0.952 0.953
7 0.007 0.013 0.072 0.070 0.938 0.942
8 0.012 0.010 0.051 0.052 −0.433 1.028
9 0.013 0.015 0.070 0.069 0.286 0.978
10 0.016 0.018 0.099 0.098 0.185 0.986
11 0.010 0.013 0.067 0.066 0.344 0.977
12 0.016 0.009 0.092 0.093 −0.819 1.025
13 0.015 0.011 0.071 0.072 −0.627 1.035
14 0.019 0.012 0.100 0.102 −0.702 1.034
15 0.011 0.011 0.061 0.061 −0.029 1.006
16 0.032 0.014 0.159 0.162 −1.215 1.044
17 0.023 0.025 0.158 0.157 0.145 0.990
18 0.024 0.021 0.146 0.147 −0.232 1.016
19 0.011 0.012 0.086 0.085 0.199 0.988
20 0.007 0.010 0.067 0.066 0.477 0.979
21 0.011 0.011 0.065 0.065 0.082 0.996
22 0.018 0.016 0.080 0.081 −0.225 1.018
23 0.012 0.008 0.067 0.068 −0.652 1.023
24 0.013 0.004 0.059 0.059 −1.533 0.995
25 0.017 0.014 0.088 0.088 −0.361 1.021
26 0.014 0.013 0.081 0.082 −0.128 1.007
27 0.006 0.012 0.077 0.075 0.810 0.955
28 0.018 0.011 0.077 0.078 −1.058 1.044
29 0.010 0.012 0.087 0.086 0.276 0.989
30 0.010 0.010 0.065 0.064 0.055 0.999
31 0.012 0.013 0.086 0.085 0.147 0.991
32 0.009 0.006 0.082 0.082 −0.406 1.004
33 0.016 0.009 0.082 0.083 −0.862 1.026
34 0.017 0.006 0.077 0.078 −1.461 1.018
35 0.011 0.012 0.072 0.072 0.243 0.984
36 0.009 0.013 0.064 0.062 0.658 0.954
37 0.012 0.011 0.064 0.064 −0.228 1.012
38 0.026 0.023 0.203 0.204 −0.142 1.006
39 0.011 0.010 0.065 0.065 −0.195 1.009
40 0.006 0.012 0.087 0.085 0.749 0.960
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Table A1
(continued)

(1) (2) (3) (4) (5) (6) (7)
Stock μsam

i μ∗
i σ sam

i σ∗
i t-Value (σ∗

i )2/ (σ sam
i )2

(i) μ∗
i (The 95% confidence

interval for this value is
[0.790–1.319])

41 0.010 0.015 0.115 0.114 0.480 0.978
42 0.016 0.017 0.119 0.119 0.011 1.001
43 0.018 0.003 0.100 0.099 −1.615 0.986
44 0.013 0.017 0.105 0.104 0.364 0.976
45 0.009 0.013 0.088 0.087 0.499 0.974
46 0.006 0.014 0.085 0.082 1.067 0.932
47 0.013 0.018 0.124 0.122 0.409 0.978
48 0.011 0.011 0.084 0.083 0.057 0.997
49 0.008 0.009 0.077 0.077 0.112 0.998
50 0.017 0.011 0.082 0.084 −0.884 1.036
51 0.012 0.014 0.081 0.081 0.265 0.984
52 0.021 0.018 0.105 0.106 −0.277 1.019
53 0.016 0.012 0.072 0.073 −0.517 1.030
54 0.011 0.014 0.106 0.105 0.281 0.984
55 0.011 0.012 0.074 0.074 0.118 0.993
56 0.007 0.013 0.076 0.074 0.889 0.945
57 0.011 0.013 0.072 0.071 0.379 0.975
58 0.014 0.019 0.102 0.100 0.581 0.952
59 0.023 0.016 0.089 0.091 −0.807 1.056
60 0.014 0.018 0.090 0.088 0.489 0.961
61 0.012 0.012 0.070 0.070 −0.095 1.005
62 0.012 0.011 0.093 0.093 −0.095 1.000
63 0.008 0.011 0.075 0.074 0.436 0.979
64 0.021 0.019 0.106 0.107 −0.172 1.012
65 0.016 0.013 0.077 0.078 −0.336 1.018
66 0.013 0.014 0.074 0.074 0.110 0.993
67 0.016 0.017 0.076 0.075 0.130 0.988
68 0.011 0.008 0.052 0.052 −0.610 1.020
69 0.020 0.020 0.134 0.133 0.029 0.994
70 0.014 0.014 0.076 0.076 0.009 0.997
71 0.010 0.013 0.094 0.094 0.346 0.983
72 0.015 0.011 0.070 0.071 −0.560 1.028
73 0.018 0.013 0.088 0.089 −0.658 1.033
74 0.022 0.014 0.096 0.098 −0.934 1.049
75 0.011 0.007 0.059 0.059 −0.705 1.018
76 0.005 0.013 0.083 0.081 1.013 0.937
77 0.007 0.013 0.083 0.081 0.718 0.957
78 0.005 0.013 0.083 0.081 1.032 0.938
79 0.013 0.014 0.086 0.086 0.028 0.997
80 0.016 0.015 0.090 0.090 −0.046 1.006
81 0.012 0.015 0.074 0.072 0.392 0.964
82 0.011 0.013 0.070 0.069 0.290 0.983
83 0.021 0.022 0.117 0.116 0.099 0.992
84 0.019 0.019 0.089 0.088 −0.004 0.993
85 0.018 0.011 0.098 0.100 −0.800 1.029
86 0.013 0.012 0.073 0.073 −0.228 1.012
87 0.021 0.021 0.130 0.130 0.031 0.996
88 0.007 0.016 0.095 0.092 0.968 0.939
89 0.021 0.020 0.100 0.100 −0.109 1.009
90 0.040 0.022 0.193 0.199 −1.035 1.052
91 0.034 0.015 0.161 0.164 −1.274 1.046
92 0.030 0.027 0.170 0.171 −0.163 1.014
93 0.012 0.014 0.086 0.086 0.310 0.982
94 0.013 0.011 0.080 0.080 −0.204 1.009
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Table A1
(continued)

(1) (2) (3) (4) (5) (6) (7)
Stock μsam

i μ∗
i σ sam

i σ∗
i t-Value (σ∗

i )2/ (σ sam
i )2

(i) μ∗
i (The 95% confidence

interval for this value is
[0.790–1.319])

95 0.030 0.023 0.130 0.133 −0.579 1.045
96 0.016 0.012 0.147 0.147 −0.245 1.009
97 0.017 0.012 0.087 0.088 −0.523 1.024
98 0.017 0.017 0.102 0.102 0.035 0.997
99 0.020 0.014 0.089 0.090 −0.704 1.041
100 0.021 0.013 0.087 0.089 −0.997 1.057

This is the complete version of table 1 given in the text, where here the data are provided for all one hundred
stocks. The sample parameters are given in the second and fourth columns. The expected returns and standard
deviations, which are closest to these parameters and ensure that the market proxy is efficient (i.e., the parameters
that solve Optimization Problem 1), are given in columns 3 and 5. The t-values for the expected returns are given
in column 6, which shows that none of these values are significant at the 95% level. Column 7 reports the ratio
between the variances (σ∗)2 and the sample variances. The 95% confidence interval for this ratio is [0.790–
1.319] (see footnote 5). All of the ratios in the table fall well within this interval.
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