



# Demande du Transporteur et du Distributeur relative au poste de l'Achigan





#### Table des matières

| 1    | Introd | uction                                                                                                   | 5  |
|------|--------|----------------------------------------------------------------------------------------------------------|----|
| 2    | Conte  | exte général et situation actuelle                                                                       | 7  |
|      | 2.1    | Prévision de la charge par poste                                                                         | 8  |
|      | 2.2    | Réseau électrique actuel et enjeux à résoudre                                                            | 9  |
| 3    | Objec  | tifs visés par les projets                                                                               | 11 |
| 4    | Soluti | ons envisagées                                                                                           | 12 |
|      | 4.1    | Description des solutions envisagées                                                                     | 12 |
|      | 4.1.1  | Solution 1 – Remplacement du réseau Paquin à 69 kV par un réseau à 120 kV                                | 12 |
|      | 4.1.2  | Solution 2 – Maintien et accroissement de capacité des équipements à 69 kV                               | 13 |
|      | 4.1.3  | Solution 3 – Maintien de la boucle sud du réseau à 69 kV et construction du poste de Chertsey à 120 kV   | 14 |
|      | 4.1.4  | Solution 4 – Maintien de la boucle nord du réseau à 69 kV et construction du poste de l'Achigan à 120 kV | 14 |
|      | 4.2    | Estimation des coûts des solutions envisagées                                                            | 15 |
| List | e des  | tableaux                                                                                                 |    |
| Tab  | leau 1 | Concordance entre la demande conjointe du Transporteur et du Distributeur et le Règlemen                 | t7 |
| Tab  | leau 2 | Prévisions de la charge pour la période 2017-2032                                                        | 8  |
| Tab  | leau 3 | Comparaison économique des solutions (M\$ actualisés 2018)                                               | 16 |
| List | e des  | figures                                                                                                  |    |
| Figu | ıre 1  | Carte géographique du réseau Paquin à 69 kV                                                              | 9  |
| Figu | ıre 2  | Exemple de poteau, réseau conjoint                                                                       | 10 |
| List | e des  | annexes                                                                                                  |    |
| Ann  | exe 1  | Liste des activités d'information et de consultation                                                     |    |
| Ann  | exe 2  | Analyse économique                                                                                       |    |





#### Liste des abréviations et des symboles

| Abréviation / Symbole | Correspondance                    |
|-----------------------|-----------------------------------|
| CGA                   | coûts globaux actualisés          |
| CLT                   | capacité limite de transformation |
| kV                    | kilovolt                          |
| km                    | kilomètre                         |
| m                     | mètre                             |
| M\$                   | million de dollars                |
| MVA                   | mégavoltampère                    |
| Mvar                  | mégavar                           |





#### 1 Introduction

- 1 Hydro-Québec dans ses activités de transport d'électricité (le « Transporteur ») et
- 2 Hydro-Québec dans ses activités de distribution d'électricité (le « Distributeur ») visent à
- 3 obtenir l'autorisation de la Régie de l'énergie (la « Régie ») pour la construction d'un nouveau
- 4 poste de l'Achigan à 120-25 kV, situé dans la région des Laurentides, et de sa ligne
- 5 d'alimentation à 120 kV d'environ 8 km ainsi que la réalisation de travaux connexes.
- 6 La demande conjointe vise à répondre aux besoins de croissance et de maintien des actifs
- 7 de la région des Laurentides. L'analyse de la situation actuelle a permis de déterminer les
- 8 solutions optimales afin de répondre aux besoins du réseau desservant les municipalités de
- 9 Saint-Lin, Sainte-Sophie, New-Glasgow, Prévost, Sainte-Marguerite et Saint-Hippolyte, soit
- les plus importantes de cette région, tout en considérant les préoccupations du Transporteur
- et du Distributeur. La solution retenue de la demande conjointe est donc le produit d'une
- 12 planification intégrée et d'une analyse conjointe.
- 13 Aux fins du Règlement sur les conditions et les cas requérant une autorisation de la Régie de
- 14 l'énergie (le « Règlement »), le volet transport de la demande est présenté comme le « Projet
- du Transporteur », tandis que son volet distribution est présenté comme le « Projet du
- 16 Distributeur ».

23

24

25

- 17 Ces projets sont réalisables tant sur le plan technique que sur celui de l'échéancier. Les
- 18 études réalisées à ce jour ont permis de confirmer cette faisabilité et de préciser les
- 19 contraintes inhérentes à ces projets.
- 20 De façon plus spécifique, le Projet du Transporteur consiste à :
- construire un nouveau poste à 120-25 kV, qui requiert l'acquisition d'un terrain dans
   la municipalité de Saint-Hippolyte ;
  - construire un tronçon d'environ 8 km de ligne biterne (à deux circuits) à 120 kV se raccordant à une ligne existante ;
    - démanteler les postes à 69-25 kV de Saint-Calixte, de Saint-Hippolyte et de Saint-Lin.
- Le Projet du Transporteur, dont le coût total s'élève à 48,7 M\$, s'inscrit dans les catégories d'investissement « croissance des besoins de la clientèle » et « maintien des actifs ». La mise en service du Projet du Transporteur est prévue pour le mois de septembre 2020.
- Le Projet du Distributeur consiste à raccorder le nouveau poste de l'Achigan au réseau de distribution, soit de :
- construire l'ensemble des composantes du réseau de distribution entre le nouveau poste de l'Achigan et son réseau actuel ;





- procéder aux transferts de charges prévus ;
- raccorder les charges des clients au nouveau poste de l'Achigan.
- 3 Le coût total du Projet du Distributeur s'élève à 31,3 M\$. Les travaux devraient se terminer en
- 4 2020.
- 5 Le tableau 1 indique la concordance entre les sections des pièces HQTD-1, Document 1,
- 6 HQTD-2, Document 1 et HQTD-3, Document 1 de la demande conjointe du Transporteur et
- 7 du Distributeur et les renseignements requis par le *Règlement*.





## Tableau 1 Concordance entre la demande conjointe du Transporteur et du Distributeur et le Règlement

| Règleme | ent    |            |                                                                                       | Demande   |                                                      |               |  |  |  |
|---------|--------|------------|---------------------------------------------------------------------------------------|-----------|------------------------------------------------------|---------------|--|--|--|
| Article | Alinéa | Paragr.    | Renseignements requis                                                                 | Entité(s) | Pièce                                                | Section       |  |  |  |
| 2       | 1      | 1º         | Les objectifs visés par le projet                                                     | HQT-HQD   | HQTD-1, Doc. 1                                       | 3             |  |  |  |
| 2       | 1      | 2°         | La description du projet                                                              | HQT       | HQTD-2, Doc. 1                                       | 2             |  |  |  |
|         | I      | 2"         | La description du projet                                                              | HQD       | HQTD-3, Doc. 1                                       | 1             |  |  |  |
| 2       | 1      | 3°         | La justification du projet en                                                         | HQT       | HQTD-2, Doc. 1                                       | 2             |  |  |  |
|         | '      | 3*         | relation avec les objectifs visés                                                     | HQD       | HQTD-3, Doc. 1                                       | 1             |  |  |  |
| 2       | 1      | <b>4</b> º | Les coûts associés au projet                                                          | HQT       | HQTD-2, Doc. 1<br>HQTD-2, Doc. 2<br>HQTD-2, Doc. 2.1 | 3             |  |  |  |
|         |        |            |                                                                                       | HQD       | HQTD-3, Doc. 1                                       | 2             |  |  |  |
| 2       | 1      | 5°         | L'étude de faisabilité<br>économique du projet                                        | HQT-HQD   | HQTD-1, Doc. 1                                       | 4 et annexe 2 |  |  |  |
| 2       |        | 6°         | La liste des autorisations                                                            | HQT       | HQTD-2, Doc. 1                                       | Annexe 3      |  |  |  |
| 2 1 6°  |        | 9,         | exigées en vertu d'autres lois                                                        | HQD       | HQTD-3, Doc. 1                                       | 1             |  |  |  |
| 2 1 7°  |        | <b>7</b> º | L'impact sur les tarifs incluant                                                      | HQT       | HQTD-2, Doc. 1                                       | 4 et Annexe 4 |  |  |  |
|         | '      | 7          | une analyse de sensibilité                                                            | HQD       | HQTD-3, Doc. 1                                       | 3             |  |  |  |
|         | _      | •          | L'impact sur la fiabilité du                                                          | HQT       | HQTD-2, Doc. 1                                       | 5             |  |  |  |
| 2       | 1      | 8°         | réseau et sur la qualité de<br>service                                                | HQD       | HQTD-3, Doc. 1                                       | 4             |  |  |  |
| 2       | 1      | 9°         | Le cas échéant, les autres solutions envisagées                                       | HQT-HQD   | HQTD-1, Doc. 1                                       | 4 et annexe 1 |  |  |  |
| 2 4 40  |        | 1º         | La liste des principales                                                              | HQT       | HQTD-2, Doc. 1                                       | Annexe 2      |  |  |  |
| 3       | 1      | 1,         | normes techniques                                                                     | HQD       | HQTD-3, Doc. 1                                       | Annexe A      |  |  |  |
| 3       | 1      | 3º         | Le cas échéant, les<br>engagements contractuels et<br>leurs contributions financières | HQT-HQD   | S. O.                                                | S. O.         |  |  |  |

#### 2 Contexte général et situation actuelle

- 1 Cette section présente la description des installations de transport et de distribution touchées
- 2 par les projets du Transporteur et du Distributeur, de même que les enjeux spécifiques qu'ils
- 3 visent à régler.





#### 2.1 Prévision de la charge par poste

- 1 Les charges de la zone visée dans le cadre de ce projet sont alimentées par cinq postes
- 2 satellite à 69-25 kV, soit de Saint-Calixte, de Saint-Hippolyte, de Saint-Charles, de Sainte-
- 3 Marguerite et de Saint-Lin, et par quatre postes satellites à 120-25 kV, soit les postes de Saint
- 4 Lin, de Magnan, Arthur-Buies et de Rolland.
- 5 Le tableau 2 présente l'évolution de la charge prévue aux postes alimentant la région visée.

Tableau 2
Prévisions de la charge pour la période 2017-2032

| Postes satellites       | CLT<br>(MVA) |       | Charge<br>(MVA)                                         |       |       |       |       |       |       |       |       |       |       |       |       |       |
|-------------------------|--------------|-------|---------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|                         |              | 17-18 | 18-19                                                   | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | 24-25 | 25-26 | 26-27 | 27-28 | 28-29 | 29-30 | 30-31 | 31-32 |
| St-Calixte 69-25 kV     | 19           | 17    | 17                                                      | 17    | 17    | 17    | 18    | 18    | 18    | 18    | 18    | 18    | 18    | 18    | 18    | 18    |
| St-Hippolyte 69-25 kV   | 40           | 46    | 46                                                      | 46    | 47    | 47    | 47    | 47    | 47    | 48    | 48    | 48    | 48    | 48    | 49    | 49    |
| St-Charles 69-25 kV     | 18           | 15    | 16                                                      | 16    | 16    | 16    | 16    | 16    | 16    | 16    | 16    | 16    | 16    | 16    | 16    | 16    |
| Ste-Marguerite 69-25 kV | 30           | 28    | 29                                                      | 29    | 29    | 29    | 29    | 29    | 29    | 30    | 30    | 30    | 30    | 30    | 30    | 30    |
| St-Lin 69-25 kV         | 21           | 25    | Charges transférées vers le poste Saint-Lin à 120-25 kV |       |       |       |       |       |       |       |       |       |       |       |       |       |
| St-Lin 120-25 kV        | 193          | 126   | 154                                                     | 156   | 159   | 161   | 163   | 166   | 168   | 170   | 172   | 174   | 177   | 179   | 181   | 183   |
| Magnan 120-25 kV        | 129          | 122   | 123                                                     | 125   | 126   | 127   | 128   | 129   | 129   | 130   | 131   | 132   | 133   | 134   | 134   | 135   |
| Arthur-Buies 120-25 kV  | 194          | 210   | 213                                                     | 216   | 220   | 223   | 226   | 229   | 232   | 235   | 237   | 240   | 243   | 245   | 248   | 250   |
| Rolland 120-25 kV       | 192          | 197   | 206                                                     | 209   | 212   | 215   | 219   | 222   | 225   | 228   | 231   | 234   | 237   | 239   | 242   | 245   |

Dépassement prévu de la CLT du poste

- 6 Comme il appert du tableau 2, trois postes à 69-25 kV sont très près d'atteindre leur CLT et
- 7 le poste de Saint-Hippolyte l'a dépassée. Le poste de Saint-Lin à 69-25 kV verra ses charges
- 8 transférées vers le poste à 120-25 kV de Saint-Lin en 2018. Les postes à 120-25 kV de
- 9 Magnan, Arthur-Buies et de Rolland sont également près d'atteindre leur CLT ou l'ont déjà
- 10 dépassée.
- 11 Au fil des années, le réseau de distribution a été optimisé afin d'utiliser le maximum de
- capacité disponible. En effet, pour pallier une capacité de transformation limitée des postes à
- 13 69-25 kV kV, les postes à 120-25 kV ont alimenté des charges qui auraient techniquement dû
- 14 être alimentées par ces postes vu leur proximité. À ce jour, une dizaine de lignes de
- distribution en provenance des postes à 120-25 kV sont surchargées et trop longues, leurs
- charges étant concentrées en bout de réseau, souvent près d'un poste à 69-25 kV.



1

3

7 8



#### 2.2 Réseau électrique actuel et enjeux à résoudre

- La région des Laurentides comprend cinq postes satellites à 69-25 kV : de Saint-Lin, de Saint-Calixte, de Saint-Charles, de Sainte-Marguerite et de Saint-Hippolyte, tous situés dans 2 les localités du même nom. Ils sont alimentés par les lignes à 69 kV provenant du poste 4 source Paquin à 120-69 kV. Cet architecture à 69 kV constituée du poste source, des postes 5 satellites et des lignes est identifiée comme le réseau Paquin à 69 kV (ci-après « réseau Paquin à 69 kV »). Le poste Paquin à 120-69 kV est quant à lui alimenté par la ligne biterne 6 reliant le poste Lafontaine et le poste Saint-Lin à 120 kV provenant du poste source de Lafontaine.
- 9 La Figure 1 montre l'emplacement géographique du réseau Paquin à 69 kV.

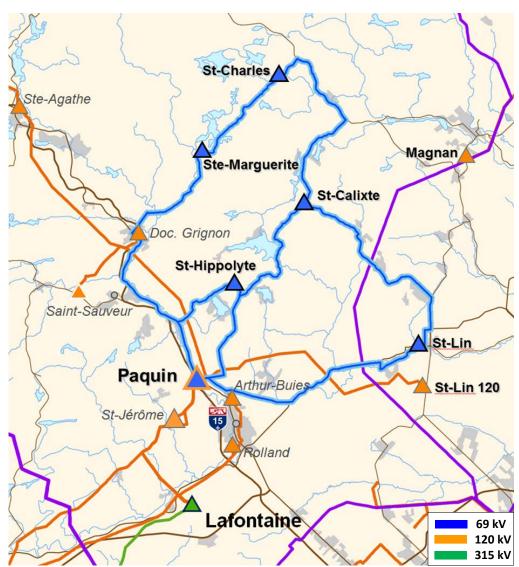



Figure 1 Carte géographique du réseau Paquin à 69 kV

Original: 2018-04-13 HQTD-1, Document 1 Page 9 de 16





- 1 Le réseau Paquin à 69 kV est composé de lignes qui supportent des équipements de
- 2 distribution et transport. Ce réseau de type conjoint comprend 138 km de lignes à 69 kV et à
- 3 25 kV (voir figure 2), c'est-à-dire des lignes à 69 et à 25 kV installées sur les mêmes poteaux
- 4 de bois. Les trois conducteurs de la ligne du haut sont exploités à 69 kV par le Transporteur
- 5 tandis que ceux du bas sont exploités à 25 kV par le Distributeur.

Figure 2
Exemple de poteau, réseau conjoint



- 6 Les réseaux de type conjoint nécessitent une coordination accrue entre le Transporteur et le
- 7 Distributeur lors d'une intervention et sont caractérisés par une faible continuité de service
- 8 car une intervention sur un des deux niveaux de tension nécessite l'interruption de l'autre
- 9 niveau. De plus, les lignes à 69 kV sur poteau de bois sont moins robustes que les lignes
- 10 supportées par des pylônes en acier.

#### 11 Poste source Paguin à 120-69 kV

- 12 Le poste source Paquin à 120-69 kV a été mis en service en 1960. Il est de type extérieur et
- 13 équipé de deux transformateurs à 120-69 kV de 100 MVA chacun. La vétusté du poste
- 14 nécessite des investissements importants en pérennité. La majorité des disjoncteurs, les
- transformateurs de puissance à 120-69 kV, les systèmes de protection et les systèmes de
- 16 commande de technologie analogique ont atteint la fin de leur vie utile.

#### Poste de Saint-Calixte à 69 kV

17

22

- 18 Le poste de Saint-Calixte a été mis en service en 1967. Il est équipé de deux transformateurs
- 19 de puissance à 69-25 kV de 12 MVA chacun et de trois départs de ligne à 25 kV. Les
- transformateurs de puissance, les disjoncteurs et les systèmes de commande et de protection
- 21 ont également atteint la fin de leur durée de vie utile.

#### Poste de Saint-Hippolyte à 69 kV

- 23 Le poste de Saint-Hippolyte est un cas particulier puisqu'il a été mis en service en 1987 dans
- 24 une optique de le démanteler au cours des dix années suivantes. Il a donc été doté





- d'équipements ayant déjà été utilisés. Il est équipé de trois transformateurs de puissance à
- 2 69-25 kV de 12 MVA chacun et de six départs de ligne à 25 kV. Ces transformateurs et les
- deux disjoncteurs à 69 kV sont à la fin de leur vie utile, de même que les disjoncteurs à 25 kV.
- 4 Les bâtiments des systèmes de protection et les systèmes de commande ont déjà atteint leur
- 5 fin de vie utile alors que les systèmes de protection et de commande l'atteindront
- 6 respectivement vers 2027 et 2030.

#### 7 Poste de Saint-Charles à 69 kV

- 8 Le poste de Saint-Charles a été mis en service en 1967. Il est équipé de deux transformateurs
- 9 de puissance à 69-25 kV de 12 MVA chacun et de trois départs de ligne à 25 kV. Les
- 10 transformateurs de puissance, les disjoncteurs et les équipements d'automatismes et de
- 11 protection ont tous atteint leur durée de vie utile.

#### 12 Poste de Sainte-Marguerite à 69 kV

- Le poste de Sainte-Marguerite, mis en service en 1968, a été reconstruit en partie en 1993. Il
- est équipé de deux transformateurs de puissance à 69-25 kV de 22,5 MVA chacun et de
- 15 3 départs de ligne à 25 kV. Quelques équipements ont dépassé leur durée de vie utile, mais
- 16 la plupart l'atteindra à plus long terme.

#### Poste de Saint-Lin à 69 kV

17

- Le démantèlement du poste de Saint-Lin à 69-25 kV était prévu consécutivement au transfert
- des charges réalisé par le Distributeur entre ce poste et le poste Saint-Lin à 120-25 kV. Son
- 20 démantèlement est ainsi prévu en 2020 dans le présent projet.

#### 3 Objectifs visés par les projets

- Les projets du Transporteur et du Distributeur ont comme objectif premier de répondre aux
- 22 enjeux reliés à la pérennité du réseau Paquin à 69 kV. En second lieu, les projets visent à
- 23 faire face à la croissance de la demande de cette région et à assurer le développement du
- réseau de distribution à 25 kV en implantant une architecture à 120-25 kV en remplacement
- de l'architecture actuelle à 69-25 kV. Le remplacement du réseau Paquin à 69 kV a été
- 26 amorcé dans les années 2000 avec le projet Saint-Lin à 120-25 kV qui en constituait la
- 27 première étape<sup>1</sup>. Deux autres postes sont ainsi prévus afin de compléter ce réaménagement.
- 28 Un premier poste, le poste de l'Achigan, est l'objet de la présente demande alors que le
- 29 Transporteur prévoit qu'un deuxième poste à 120-25 kV, le poste de Chertsey, fera l'objet
- 30 d'une demande ultérieure vers 2019.
- 31 Enfin, en assurant le maintien de ses actifs et en privilégiant la construction d'une ligne de
- 32 transport séparée de la ligne de distribution, les travaux du Transporteur auront un impact

Demande relative au projet de construction du nouveau poste de Saint-Lin à 120-25 kV et d'une nouvelle ligne Paquin/Saint-Lin à 120 kV, dossier R-3627-2007, avril 2007.





- 1 positif sur la fiabilité et la qualité de service du réseau de transport et, par le fait même, sur la
- 2 continuité du service offert aux clients du Distributeur.

#### 4 Solutions envisagées

#### 4.1 Description des solutions envisagées

- 3 Le Transporteur et le Distributeur ont examiné diverses solutions pour répondre aux besoins
- 4 en pérennité et à la croissance de la région.
- 5 L'analyse effectuée par le Transporteur et le Distributeur porte sur l'ensemble du réseau
- 6 Paquin à 69 kV en comparant l'implantation de l'architecture à 120-25 kV au maintien de
- 7 l'architecture à 69-25 kV. Le réseau Paquin à 69 kV peut être schématisé en deux boucles.
- 8 La boucle nord alimente les postes de Saint-Charles et de Sainte-Marguerite et la boucle sud,
- 9 les postes de Saint-Lin, de Saint-Charles et de Saint-Hyppolyte. L'analyse de ces deux
- 10 boucles a permis d'envisager quatre solutions.
- 11 Ces solutions permettent d'assurer la fiabilité de l'alimentation des charges du réseau de
- 12 transport et de distribution, et ce, dans le respect des critères de conception du réseau de
- 13 transport et des normes en vigueur.
- Les aspects techniques, environnementaux et économiques ont également été considérés
- pour orienter le choix de la meilleure solution. À cet égard et conformément à la demande de
- la Régie<sup>2</sup>, le Transporteur et le Distributeur présentent à l'annexe 1 la liste des activités
- d'information et de consultation menées auprès du public pour la réalisation de leurs projets.
- 18 Ces solutions sont les suivantes :

19

20

21

22

23

24

- Solution 1 : Remplacement du réseau Paquin à 69 kV par un réseau à 120 kV ;
- Solution 2 : Maintien et accroissement de capacité des équipements à 69 kV ;
  - Solution 3 : Maintien de la boucle sud du réseau à 69 kV et construction du poste de Chertsey à 120 kV;
    - Solution 4 : Maintien de la boucle nord du réseau à 69 kV et construction du poste de l'Achigan à 120 kV.

#### 4.1.1 Solution 1 – Remplacement du réseau Paquin à 69 kV par un réseau à 120 kV

- La solution 1 constitue la solution optimale retenue par le Transporteur et le Distributeur. Elle
- consiste à remplacer le réseau Paquin à 69 kV par deux postes à 120-25 kV.
- 27 Un poste à 120-25 kV, le poste de l'Achigan, sera situé dans la municipalité de Saint-Hippolyte
- et remplacera les deux postes de la boucle sud du réseau Paquin à 69 kV (Saint-Hippolyte et

<sup>&</sup>lt;sup>2</sup> Lettre de la Régie de l'énergie du 23 janvier 2018 dans le cadre de la Demande relative au poste des Patriotes (R-4030-2018).





- Saint-Calixte). Ce poste sera alimenté par la ligne à 120 kV reliant les postes Lafontaine et
- 2 de Saint-Lin en provenance du poste source de Lafontaine. Ce poste de type extérieur
- 3 comprendra deux transformateurs de puissance de 66 MVA chacun. À la mise en service
- 4 prévue pour 2020, le poste offrira une CLT initiale de 90 MVA. Un 3e transformateur de
- 5 puissance et ses départs de ligne associés seront ajoutés quand la croissance le justifiera.
- 6 L'autre poste à 120-25 kV, le poste de Chertsey, sera situé près de l'actuel poste de
- 7 Saint-Charles et remplacera les deux postes de la boucle nord du réseau Paquin à 69 kV (de
- 8 Saint-Charles et de Sainte-Marguerite). Ce poste sera alimenté par la ligne à 120 kV reliant
- 9 les postes de Grand-Brûlé, de Ste-Agathe et Doc-Grignon en provenance du poste source
- 10 Grand-Brûlé (poste situé au nord de Ste-Agathe). Ce poste sera mis en service vers 2023.
- 11 Ce délai a été prévu en tenant compte de la croissance des postes de Magnan et de
- Sainte-Marguerite, du peu de marge du poste de Saint-Charles ainsi que de la vétusté du
- 13 poste source Paquin à 120-69 kV.
- 14 Le vieillissement des équipements à 69 kV, la croissance de la demande ainsi que des
- transferts de charge visant à régler des problèmes de surcharges de lignes de distribution,
- sont les principaux éléments qui militent en faveur du remplacement de l'architecture à 69 kV
- par une architecture à 120 kV pour tout le réseau Paquin à 69 kV. Une telle solution permet
- de régler les besoins combinés de pérennité du réseau Paquin à 69 kV et de croissance de
- 19 la région des Laurentides.
- 20 Cette solution permet également d'éviter des investissements en pérennité pour maintenir les
- 21 installations du réseau Paquin à 69 kV puisque celles-ci seront complétement démantelées,
- 22 y compris le poste source Paquin à 120-69 kV.
- 23 L'ajout de ces deux postes améliore de façon notable l'architecture du réseau de distribution
- 24 ainsi que la qualité de service offerte par les infrastructures de transport aux clients de cette
- 25 région. Il est à noter que pour le Distributeur, cette solution permet d'exploiter à 25 kV les
- 26 lignes à 69 kV, limitant le nombre de nouveaux parcours aériens à 25 kV.
- 27 Comme présentée au tableau 3, la solution 1 s'avère la solution dont les coûts globaux
- 28 actualisés sont les plus bas tout en générant le moins de pertes électriques.

#### 4.1.2 Solution 2 – Maintien et accroissement de capacité des équipements à 69 kV

- 29 La solution 2 consiste à maintenir et à renforcer les lignes à 69 kV actuelles ainsi que d'ajouter
- deux nouveaux postes et de nouvelles lignes à 69 kV pour répondre à la croissance de la
- région. De plus, des transferts de charges seraient requis par le Distributeur pour régler des
- problèmes de surcharges de lignes et pallier les difficultés de trouver de nouveaux parcours
- 33 aériens à 25 kV. Finalement, cette solution entraîne la reconstruction du poste Paquin à
- 34 120-69 kV et le démantèlement du poste Saint-Charles à 69-25 kV (remplacé par un des
- 35 nouveaux postes).





- 1 Dans le cas des nouvelles lignes à 69 kV, de nouvelles emprises de ligne seraient
- 2 nécessaires afin de construire des lignes séparées pour la tension 69 kV de celles à 25 kV,
- 3 ce qui respecte les critères de conception actuels. Des investissements en maintien des actifs
- 4 sont également nécessaires dans tous les postes, en plus d'inclure les investissements
- 5 nécessaires à la croissance de la demande. Bien que les équipements à 69 kV soient moins
- 6 coûteux à l'achat lorsque comparés à des équipements à 120 kV, un poste à 120 kV nécessite
- 7 moins d'équipements et dispose d'une plus grande capacité. De plus, des clients resteraient
- 8 alimentés par des lignes en réseau conjoint à 69 et 25 kV. La fiabilité du service offert à ces
- 9 clients resterait donc faible.
- 10 Pour toutes ces raisons, le Transporteur et le Distributeur sont d'avis que la solution 2 doit
- 11 être rejetée au profit de la solution 1.

## 4.1.3 Solution 3 – Maintien de la boucle sud du réseau à 69 kV et construction du poste de Chertsey à 120 kV

- La solution 3, une solution hybride, consiste en la construction d'un poste à 120 kV pour
- 13 remplacer les deux postes de la boucle nord du réseau Paquin (de Saint-Charles et de
- Sainte-Marguerite) et la construction d'un poste à 69 kV pour soulager les postes de la portion
- 15 sud du réseau.
- 16 Cette solution présente des investissements en pérennité moindre par rapport à la solution 2
- 17 pour maintenir la boucle nord du réseau Paquin à 69 kV. En effet, les postes de
- Sainte-Marguerite et de Saint-Charles seraient démantelés. Les investissements nécessaires
- au maintien de la boucle sud à 69 kV seraient toutefois importants.
- 20 La qualité du service offert aux clients alimentés par la boucle nord du réseau serait améliorée
- 21 par l'ajout du poste de Chertsey à 120-25 kV. Toutefois, les clients alimentés par la boucle
- 22 sud du réseau resteraient alimentés par des équipements à 69 kV, dont des lignes en réseau
- 23 conjoint à 69 et 25 kV. La fiabilité du service offert à ces clients resterait donc faible.
- 24 Pour toutes ces raisons, le Transporteur et le Distributeur sont d'avis que la solution 3 doit
- 25 être rejetée au profit de la solution 1.

### 4.1.4 Solution 4 – Maintien de la boucle nord du réseau à 69 kV et construction du poste de l'Achigan à 120 kV

- La solution 4, une solution hybride, consiste en la construction d'un poste à 120 kV pour
- 27 remplacer les deux postes de la boucle sud du réseau (Saint-Calixte et Saint-Hippolyte) et la
- 28 construction d'un poste à 69 kV pour soulager les postes de la boucle nord du réseau et
- 29 remplacer le poste de Saint-Charles.
- Cette solution présente des investissements en pérennité moindre par rapport à la solution 2.
- En effet, les postes de Saint-Hippolyte et de Saint-Calixte seraient démantelés. Tout comme





- pour la solution 3, les investissements nécessaires au maintien de la boucle nord du réseau
- 2 à 69 kV seraient toutefois importants.
- 3 La qualité du service offert aux clients situés sur la boucle sud du réseau serait améliorée par
- 4 l'ajout du poste de l'Achigan à 120-25 kV. Toutefois, les clients de la boucle nord du réseau
- 5 resteraient alimentés par des équipements à 69 kV, dont des lignes en réseau conjoint à 69
- 6 et 25 kV. La fiabilité du service offert à ces clients resterait donc faible.
- 7 Pour toutes ces raisons, le Transporteur et le Distributeur sont d'avis que la solution 4 doit
- 8 être rejetée au profit de la solution 1.

#### 4.2 Estimation des coûts des solutions envisagées

- 9 Le Transporteur et le Distributeur ont réalisé une comparaison des coûts des solutions
- 10 envisagées en tenant compte, entre autres, des investissements requis pour la construction,
- des valeurs résiduelles des investissements, de la taxe sur les services publics, du coût du
- capital et des pertes électriques. L'analyse économique a été réalisée sur une période de
- 13 44 ans, soit 40 ans après la mise en service des équipements.
- 14 Les hypothèses utilisées pour l'analyse économique sont les suivantes :
- taux d'actualisation de long terme du Transporteur de 5,233 %;
- taux d'actualisation de long terme du Distributeur de 5,445 %;
- taux d'inflation générale de 2,0 %;
- taux de la taxe sur les services publics de 0,55 %.
- 19 Les valeurs résiduelles correspondent à la valeur actuelle des flux d'investissement pour la
- 20 portion comprise entre la fin de la durée d'analyse et la fin de la durée de vie utile spécifique
- 21 de chaque flux d'investissement. La durée d'un flux d'investissement est déterminée en
- 22 fonction des catégories d'équipement établies par le Transporteur et le Distributeur.
- 23 Par ailleurs, comme demandé par la Régie<sup>3</sup>, le Transporteur a intégré les informations
- relatives à l'évaluation de la valeur des pertes électriques, soit leur niveau en puissance et en
- 25 énergie, ainsi que les prix de référence utilisés, dans ses tableaux présentés à l'annexe 1. Il
- 26 confirme également l'analyse économique réalisée dans le présent dossier ne tient compte
- 27 des pertes électriques différentielles qu'à partir de la mise en service.
- 28 Le tableau 2 présente une comparaison économique des solutions décrites précédemment.
- 29 Les coûts y sont exprimés en millions de dollars actualisés de l'année 2018.

Décision D-2012-152, paragraphe 64 et décision D-2012-160, paragraphes 42 et 43.





Tableau 3
Comparaison économique des solutions (M\$ actualisés 2018)

|                                | Solution 1   | Solution 2    | Solution 3      | Solution 4      |  |
|--------------------------------|--------------|---------------|-----------------|-----------------|--|
|                                | Remplacement | Maintien et   | Maintien de la  | Maintien de la  |  |
|                                | du réseau    | accroissement | boucle sud à    | boucle nord à   |  |
|                                | Paquin à     | de capacité   | 69 kV et        | 69 kV et        |  |
|                                | 69 kV par un | des           | construction du | construction du |  |
|                                | réseau       | équipements   | poste de        | poste de        |  |
|                                | à 120 kV     | à 69 kV       | Chertsey        | l'Achigan       |  |
|                                |              |               | à 120 kV        | à 120 kV        |  |
| HQT                            |              |               |                 |                 |  |
| Investissements                | 111,8        | 184,9         | 165,0           | 152,8           |  |
| Valeurs résiduelles            | (5,5)        | (12,3)        | (5,7)           | (9,7)           |  |
| Taxes                          | 7,1          | 12,2          | 10,8            | 9,9             |  |
| Pertes électriques             |              | 19,9          | 17,0            | 10,5            |  |
| Coûts globaux actualisés HQT   | 113,4        | 204,7         | 187,1           | 163,5           |  |
| HQD                            |              |               |                 |                 |  |
| Investissements                | 36,7         | 15,5          | 18,0            | 40,5            |  |
| Valeurs résiduelles            | (2,5)        | (1,3)         | (1,3)           | (2,5)           |  |
| Taxes                          | 2,3          | 1,0           | 1,2             | 2,5             |  |
| Pertes électriques             |              | (7,7)         | (7,7)           | (0,3)           |  |
| Coûts globaux actualisés HQD   | 36,5         | 7,5           | 10,2            | 40,2            |  |
| Total Coûts globaux actualisés | 149,9        | 212,2         | 197,3,          | 203,7           |  |

- 1 Les résultats de l'analyse économique réalisée par le Transporteur et le Distributeur
- 2 démontrent que les coûts globaux actualisés de la solution 1 sont inférieurs à ceux des trois
- autres solutions étudiées. Le détail de l'analyse économique et les paramètres utilisés sont
- 4 présentés à l'annexe 2.