

A REVIEW OF THE RETAIL TARIFFS OF HYDRO-QUÉBEC DISTRIBUTION

CHRISTENSEN ASSOCIATES ENERGY CONSULTING, LLC

8. RATES AND COSTS

Use of Embedded and Marginal Costs in Rate Design

- 1 Traditional rate design at both vertically integrated utilities and distribution utilities has relied
- ² on embedded costs. Embedded costs were selected early in the regulatory era as the proper
- ³ basis for rate development because they reflect the financial costs of the utility and are
- ⁴ relatively stable and free from controversy when compared with other valuation methods.
- s Rate-of-return regulation still makes use predominantly of embedded costs despite the fact
- ⁶ that competitive markets are driven by marginal cost.
- ⁷ Some utilities have incorporated marginal cost into aspects of pricing. "Marginal costs" are the
- ⁸ change in costs that accompany a change in electricity demand. The relevant costs are those of
- ⁹ fuel, variable labor and maintenance, and capacity. In competitive markets, marginal costs can
- ¹⁰ be measured by the prices of electrical energy, ancillary services (like regulating and operating
- reserves), and capacity. In non-competitive markets, marginal costs are generally quantified for
- 12 energy and capacity components.
- ¹³ Because the generators that serve demand change over time, marginal costs change over time.
- Because the generators that can serve changes in demand depend upon the locations of the
- 15 changes in demand, marginal costs also vary by location.
- ¹⁶ Hydro-Québec's marginal costs are quite unusual, as mentioned previously. In all but about 300
- ¹⁷ hours, marginal costs are flat due to the effect of hydraulic dominance and transmission
- constraints. In remaining hours, in which imports from other jurisdictions are possible, marginal
- ¹⁹ costs may vary, especially at times of low system reserves.
- 20 Canadian utilities often use some form of marginal energy (and reserves) cost as the basis for
- ²¹ allocating generation and supply costs.⁴⁹ Class allocation of such costs can be performed by
- creating load weighted marginal costs by class or rate and sharing the embedded costs of
- ²³ supply based on those shares.
- Additionally, for some time retail pricing practitioners have often used marginal cost for pricing
- of parts of blocked tariffs and TOU rates, and demand response rates often set prices in high
- cost periods as a function of day-ahead wholesale market prices. This report has noted several
- instances in which the use of market-based pricing can facilitate the resolution of rate design
- ²⁸ debates. Standby and interruptible pricing offer examples.
- ²⁹ Utilities have also undertaken marginal cost analyses of transmission and distribution functions,
- ³⁰ since business decisions require information on the incremental impact on costs of decisions
- about the grid. A common example involves line extension policies and the allocation or
- assignment of costs of lines to remote locations.

⁴⁹ For example, Manitoba Hydro uses a weighted energy allocator for generation costs that amounts to marginal energy cost, with time differentiation by season and three time periods.