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« 290 Level 3 charging stations are required in CA for BEVs with a 60 mile range.
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« Congestion occurs at a number of these Level 3 stations requiring extra chargers.

« A reservation system can reduce congestion and extra chargers needed at each station.
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Battery electric vehicles (BEVs) are important for reducing fuel consumption and vehicle operating cost,
and have the potential to reduce GHG and pollutant emissions. However, the range limits and long
recharging times serve as obstacles to mass deployment. Well planned Level 3 DC fast charging stations
are a potential solution to satisfy long distance travel demand instead of an expansive Level 2 non-home
charging infrastructure. This paper identifies candidate charging routes and uses freeway exits and high-
way intersections as approximate candidate charging locations, and consequently solves a set covering
problem to minimize the number of charging stations. Results show that 290 Level 3 charging locations
are required for the State of California based on the 2000 California Travel Survey and BEVs with 60 mile
range. With this optimized station network, electric light duty vehicle miles travelled (VMT) can reach
92% and BEVs can be used by 98% of drivers. If BEVs with 100 or 200 mile range are used, 126 or 31
Level 3 charging locations are required, respectively. This study also assesses the temporal utilization
of charging stations. Congestion at several stations suggests extra chargers are required. A reservation
system can benefit both the BEV drivers and station operators by reducing the wait times, decreasing
the extra chargers needed, and more evenly utilizing all the stations. Related policies are also discussed
to better deploy fast charging stations.
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1. Introduction

Plug-in electric vehicles (PEVs) include plug-in hybrid electric
vehicles (PHEVs) having internal combustion engines onboard to
extend vehicle range, and battery electric vehicles (BEVs) which
solely rely on the on-board electric storage. By partially or fully
shifting vehicle energy usage from petroleum to electricity, PEVs
can provide benefits for energy security, greenhouse gas (GHG)
reduction, and urban air quality.

As with other alternative fueled vehicles, the infrastructure
required for mass commercial adoption poses a significant obstacle
for BEVs. However, with the existing infrastructure of gasoline sta-
tions and Level 1 (120 V) [1] home charging the market hurdle for
PHEVs is relatively small. Previous studies suggest that for PHEVs,
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home charging alone can significantly reduce gasoline consump-
tion and vehicle operating costs [2-4]. Additionally, several studies
have shown the potential energy, emissions, and economic benefits
of PHEVs with different scenarios of Level 1 and Level 2 [1] charg-
ing [4-8]. Unfortunately, the purchase price for PHEVs can be high,
in part due to the requirement of two full powertrains [9].
Additionally tailpipe emissions still exist, and can possibly be
worse than equivalent hybrid electric vehicle (HEV) emissions,
depending on the vehicle design [10,11]. Alternatively, BEVs hav-
ing just one powertrain offer the opportunity to lower purchase
prices and guarantee zero tailpipe emissions [12]. However, a crit-
ical issue for widespread BEV adoption is charging infrastructure
that can satisfy personal travel demand while mitigating the char-
acteristics of limited range and long recharging time.

If non-home charging infrastructure is unavailable, BEVs can
still meet some driving needs with the condition that drivers
cannot travel long distances [13]. For example, only 9% of drivers
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in the study reported that they never travelled more than 100
miles on any given day. As a result, to use BEVs, most drivers must
make changes to their driving habits. A different charging infras-
tructure study [4] showed that if Level 2 charging is accessible at
all destinations, then BEV60s (BEVs with 60 mile range) could meet
the need of 96% of drivers for any given day; this represents a BEV
“feasibility” of 96%. However, it is not likely that this level of infras-
tructure could be funded or constructed in the near-term.
Furthermore, the exact locations for Level 2 electric vehicle supply
equipment (EVSE) are not likely to be optimized [4], ultimately
increasing costs and redundancy. Consequently, compromised long
distance travel demands or expansive non-home EVSE will not
facilitate widespread BEV adoption, especially in the near term.

Alternatively, Level 3 DC fast charging [1] promises fewer
charging stations while satisfying a significant portion of long-
distance travel demand. Additionally, the development of a deploy-
ment roadmap is more straightforward compared to that for Level
2 EVSE. For example, the length of time required for sufficient
charging at a Level 2 site implies that the charging needs to coin-
cide with normal destinations. Therefore, designing an infrastruc-
ture system that meets many drivers’ needs requires many EVSE
at many destinations. Conversely, the relative speed of Level 3
charging can enable drivers to more easily alter their behavior
and make deliberate stops for charging, more like traditional gaso-
line refueling. Level 3 charging can supplement the insufficient
Level 2 EVSE and increase BEV feasibility, although fast charg-
ing might not be profitable in the near-term [14]. Several studies
have focused on fast charging station design and simulation
to meet the charging time requirements of DC fast chargers
[15,16].

Some studies address DC fast charging station allocation
indirectly. Nicholas et al. [17] used GPS recorded vehicle routes
from 48 households during one month to simulate the scenario
of BEV driving and evaluate fast charging requirements in the
Sacramento, California area. Furthermore, the Nicholas et al. work
[18] presented at the Electric Vehicle Symposium 26 used CHTS
data to investigate Level 3 station allocation in California.
However, it was not clear in those models when the charge
demand was determined, thus the station locations appear to not
be optimized. Liu assessed battery swapping and fast charging
stations in the city of Beijing by considering gasoline station candi-
date sites and the distance from electrical substations [19]. The
work focused more on land coverage than BEV travel patterns.
Hiwatari et al. proposed an algorithm to move charging stations
close to where many BEVs would run out of electricity [20-22]. A
similar concept can be seen in [23,24], which also assumed fast
charging will occur when the battery energy drops to a low level.
However, these studies rely on the assumption that BEVs will use
fast chargers only when running low on energy. Other studies used
data on the electric system as the primary criterion in determining
the location of fast chargers [25,26]. Other work [27,28] optimizes
hydrogen station locations for fuel cell vehicles (FCVs) in a specific
area with the criteria that all the demand points (home addresses)
are able to reach a candidate hydrogen station location (gasoline
station) within a certain time; this is essentially a set covering
problem [29]. But this method cannot be applied to fast charging
stations directly since home addresses cannot be used as demand
points, and gasoline stations cannot be treated as the only candi-
date charging stations. The locations where BEVs require fast
charging are likely to be far away from drivers’ homes and not only
at existing gasoline stations, but also locations like grocery stores,
shopping malls, and large department stores.

The study herein optimizes Level 3 charging station deployment
by considering actual vehicle routes and potential candidate charg-
ing locations, as well as evaluating the temporal utilization of
charging stations.

2. Material and methods
The study’s methodology is summarized as:

1. Obtain petroleum fueled light-duty vehicle long-distance travel
pattern data and assume that BEV owners drive in the same
manner.

2. Identify approximate candidate charging locations.

3. Identify potential routes for BEVs that require Level 3 charging.

4. Minimize the number of stations needed to cover the maximum
potential charging routes (set covering problem).

5. Model the operation of each BEV under the optimized station
network with different charging strategies to determine tempo-
ral charging characteristics.

2.1. California household travel survey

The vehicle travel pattern data used in this paper are derived
from the 2000 California Household Travel Survey (CHTS) [30].
Several processing steps were required in order to prepare the data
for input to the model. Trips occurring without a personally owned
vehicle and/or without geographic destination information were
deleted. Person-chain data were converted to vehicle-chain data.
Vehicle routes and vehicle miles travelled (VMT) were determined
using the ArcGIS [31] software platform by calculating the shortest
path between the known geographic positions. Daily trip data with
unlinked destinations or significant over-speed were deleted, and
tours were organized into home based daily tours (first trip from
home, last trip to home). After these data processing steps, the
resulting travel survey data included 15,703 vehicles covering
64,084 single trips with an average of 7.8 miles per trip and 31.8
miles travelled per vehicle per day.

2.2. Model

Fig. 1 illustrates the model used in this work with a flow chart.
The processed CHTS vehicle travel pattern data are input into a
sub-model that determines the optimal charging strategy for
Level 1 and Level 2 charging infrastructure allocation, which was
described in a previous study [2,4]. This sub-model obtains the
optimal pattern to charge a BEV during the 24-h time period, and
further evaluates the charging infrastructure requirements in
different location categories (e.g., home or work). This allocation
sub-model can also determine “feasible” and “non-feasible” daily
tours based on different Level 1 and Level 2 charging infrastructure
scenarios. Feasible tours are accomplished with the given BEV
characteristics and specified Level 1 and Level 2 charging infras-
tructure; non-feasible tours would result in stranded drivers with
depleted batteries. The non-feasible tours are then used to investi-
gate the fast charging station allocation. According to the vehicle
and charging parameters, tours are divided into those requiring
one fast charge, and those requiring multiple fast charges. Tours
requiring just one fast charge are input into ArcGIS to identify
the candidate charging routes on which the fast charging can take
place. The next step uses the candidate locations along the candi-
date charging routes to form a set covering problem to solve for
the minimal required locations. Once the optimized fast charging
station network for tours requiring one fast charge is determined,
tours requiring multiple charging events are examined to assess
whether they are fulfilled. Since tours requiring multiple charges
results in drivers having a choice between multiple fast charging
locations available along the charging route, temporal utilization
and capacity issues can be evaluated for different station selection
strategies. Finally, it should be noted that several Level 1 and Level
2 charging infrastructure scenarios can be combined to evaluate
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Fig. 1. BEV Level 3 fast charging station allocation optimization model.
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the public Level 3 charging station requirements, e.g., home charg-
ing plus public Level 3 charging or home and work charging plus
public Level 3 charging. However, as a conservative estimate, this
paper will only address a scenario with home charging after the
last trip and no Level 1 or Level 2 non-home charging. This will
result in the largest requirement of Level 3 chargers.

2.3. Long distance driving and candidate charging locations

This work assumes that each BEV is fully recharged at the
beginning of the day and that the Level 3 charging stations are
the only charging opportunities during the day before finally
returning home. Consequently, based on conservative commercial
BEV performance, any daily VMT beyond 60 miles will require at
least one charging event. There are 2204 vehicles surveyed in the
CHTS with daily VMT longer than 60 miles, accounting for 14% of
the total surveyed vehicles.

A high correlation between long distance driving and highway
use seems intuitive. To verify this assumption, ArcGIS was used
to calculate the freeway/highway portion of each individual long
distance tour. The histogram in Fig. 2 shows that more than 80%
of long distance vehicles have at least 50% of their routes on a free-
way/highway and that on average 73% of the long distance driving
occurs on a freeway/highway. This result implies that it is reason-
able to locate fast charging sites near freeways/highways.

The determination of exact candidate locations for charging sta-
tions is difficult since multiple real factors need to be considered,
such as land use, electric circuit availability, and eligible and inter-
ested businesses. Thus, in this study, it is preferred to use approx-
imate candidate locations assuming the actual station could be
installed nearby with the consideration of the factors above and
without much loss in the robustness of the fast charging network.
Freeway exits and highway intersections are selected as approxi-
mate candidate locations for several reasons: proximity to free-
ways and highways and easy ingress and egress. Table 1 lists the
number of approximate freeway exit and highway intersection
candidate charging locations in California based on a network data-
base from StreetMap North America, ESRI Data & Maps [32]. If
specific, actual charger locations are available, they could be used
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Fig. 2. Highway/freeway portion of driving for vehicle routes greater than 60 miles.

as an alternative or supplement to the approximate candidate
locations.

As shown in Fig. 3, most freeway exits exist in pairs. Thus, the free-
way exit pairs were aggregated such that all readily accessible
roadway near the freeway would be included as one candidate
location, as shownin Fig. 3. This process reduces the approximate can-
didate locations to 2929, and potentially increases the service area.

2.4. Candidate charging opportunities

Charging opportunities must be identified during the daily tour
for each individual vehicle. Fig. 4 shows a histogram of the daily
VMT for long distance tours, in which the frequency generally
decreases with the daily travel distance. The vertical line in Fig. 4
delineates those trips greater or less than 110 miles (72% of long
distance daily tours accumulate less than 110 miles and 28% accu-
mulate greater than 110 miles.

Based on commercially available BEVs and fast charging station
characteristics [33,34], it is assumed that BEVs have a 60 mile
range when fully recharged and that fast charging is performed
anytime, as long as the vehicle has at least 5 miles of battery
energy remaining. Thus, any daily tours with VMT below 60 miles
do not require fast charging. Tours greater than 60 miles need
recharging, and the VMT between two consecutive charging events
must be within 55 miles. For 60-110 mile tours, a minimum one
time charge is needed, and multiple charges are required for the
higher VMT tours. Table 2 classifies tours by VMT and indicates
the number of vehicles in the CHTS falling within each category.

2.4.1. One time charging
Fig. 5 illustrates the candidate charging locations and candidate
charging routes for vehicles requiring one charge. The total daily

Table 1
The approximate candidate charging locations used in the model.

Freeway Intersections (between Intersections (between  Total

exits major highway and major highway and (aggregated
major highway) secondary roads) locations)

6244 137 337 2929




114 L. Zhang et al./ Applied Energy 157 (2015) 111-122
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Fig. 3. Aggregated polygon encompassing two freeway ramps and associated cross
street.

VMT is represented by X, and there are several approximate candi-
date charging locations on the route symbolized by the orange and
purple dots. From the origin O, the BEV has to be recharged once
before reaching the position marked by Y, which is the range
between charges (55 miles in this case). Similarly, from the posi-
tion marked by X-Y to the final destination X(0), a charging event
has to take place. Thus, the charging event must occur in the over-
lapped region, from X-Y to Y, which is the candidate charging
route with potential charger locations indicated by purple circles.
Previous studies all assume that drivers will take the last charging
opportunity when battery energy is the lowest [20-22,24].

2.4.2. Tours requiring more than one charge

Fig. 6 illustrates the case in which 2 charging events are
required. Using the same method as above, two regions are deter-
mined to be the sets of candidate charging routes. However, it
becomes a combinatorial problem since the selection of a charging

600 r 100%
F 90%
500 One charge L 80%
/I’ g
w - 10,
3 400 0% 2
L2 o
> 300 | i Multiple charges b
o : ]
s (=]
g o
g 2
@ 200 @
w ]
T
100

ol
Q M) Q Q Q O O <
§ ST TS
N
Daily VMT (miles)
#EEE Frequency === Cumulative %

Fig. 4. VMT histogram for vehicle tours greater than 60 miles.

Table 2
Tour characteristics and associated charging assumptions.

No charge Charge once More than once
Maximum range between 60 55 55
charge
Daily tour VMT <60 60-110 >110
Number of instances in CHTS 13,499 1584 620

O OO @l OO O

0 X-Y Y X (0)

Fig. 5. Diagram of the candidate charging route for BEVs requiring at least one fast
charging.

station in one region can determine which stations are eligible in
another region. For example, if the first point (blue) is chosen in
the first charging region, then the second point (green) cannot be
chosen because the distance between the two will violate the
criteria that the distance has to be within Y (55) miles. It is also
considered that charging more than once might not be practical
from the perspective of changing drivers’ behavior because it will
require more detouring to the stations and more charging time
at charging stations during a single day. Consequently, charging
more than once is not considered in the station optimization.
Vehicles that require more than one charge are instead checked
against the optimized stations determined by one time charging
in order to determine BEV feasibility for these tours requiring more
than one charge.

2.5. Set covering problem

With the basis of the candidate charging routes and the approx-
imate candidate locations, a set covering problem is formed [29].
The objective is to choose the minimum set of the approximate
candidate charging locations to cover all those candidate charging
routes which have intersections with any of the approximate can-
didate charging locations. Binary integer programming functions in
Matlab [35] and CPLEX [36] are used to solve this problem.

1. Decision variables:

The binary variable indicating whether the candidate location i
should be chosen x;
Where x; € {0,1}

2. Cost function:
The summation of all the decision variables, i.e., the number of
all the chosen locations

mian,»
i

3. Constraints:
Any of the candidate charging routes j needs to have at least one
candidate location chosen

Y 2y
- wodl - wos | N
20 1200 S|

0 X-2Y X-Y X(0)

Fig. 6. Diagram of candidate charging routes for BEV required at least two times
fast charging.
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ZAﬁ xXi = 1.

where A is the matrix defining which candidate locations have
intersections with which candidate charging route. If route j inter-
sects with location i, A;; has the value of one, otherwise it is zero.
The route is excluded in the optimization if there is no candidate
location on it. This avoided the optimization to be infeasible.

3. Results
3.1. Station number and allocation

Fig. 7a is an overview of the optimized charging station alloca-
tion in California for BEV with range of 60 miles. By using aggre-
gated exits as the approximate candidate charging locations, just
290 sites are required. Also, most locations are distributed in the
most populated areas (i.e., greater Los Angeles, San Diego, San
Francisco Bay area, and Sacramento). From the detailed map for
the Los Angeles region in Fig. 7a, it is clear that most locations
appear to be close to freeway intersections. This is an intuitive
result that those locations have more candidate charging routes
intersected than other locations. In order to verify the result, differ-
ent sets of candidate charging locations were also used to perform
the optimization, including a set containing all the gasoline sta-
tions and shopping centers in California. Similar results are
obtained with around 300 locations required and most stations
sited in the populated areas.

In order to understand the impact of the range of the BEV on the
infrastructure required, the same methodology has been applied to
BEV100 and BEV200 with the same set of candidate charging loca-
tions. Results show that the number of the stations reduces

dramatically with the increased range. In Fig. 7b, BEV100 needs
126 locations and it is 31 locations required by BEV200.
Compared to the results for BEV60, the locations are more evenly
spread out in the entire state rather than concentrated in the most
populated areas. In particular, for the case of 200 miles, the major-
ity of the locations are placed in the remote area. In summary,
longer BEV range reduces the total number of charging location
required while decreases its distribution in the populated areas.
The following results are all based on BEV60 since it is the worst
case scenario given the fact that the range for most of the existing
BEVs is under 80 miles.

3.2. BEV feasibility

Given the optimized charging location network of 290 sites
within California for BEV60, it is important to understand how
many BEVs could fulfill daily travel needs. The corresponding
BEV feasibility was defined in a previous study to be the ratio of
the number of BEVs that could meet daily operating behavior to
the total number of vehicles [4]. A high feasibility ratio is therefore
required for mass BEV adoption.

By design, all of the vehicle tours used in the optimization are
fulfilled by BEVs with one time fast charging, and all vehicles with
daily tours less than 60 miles need no public charging. However, a
portion of vehicles require more than one daily recharge (daily tour
greater than 110 miles), which needs more investigation. Fig. 8
shows the charging station locations along with one specific
vehicle route with a length over 110 miles. Visual inspection indi-
cates that the optimization method performed on one-time charg-
ing tours produced sufficient charging sites to meet the needs of
this multiple-charging vehicle. Quantitative analysis using ArcGIS
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Fig. 7a. Optimized charging locations for California (left) and the Los Angeles region (right).



116 L. Zhang et al./ Applied Energy 157 (2015) 111-122

and Matlab confirms the visual analysis by breaking the route
into segments shorter than Y (55) miles. The same analysis is
performed for all the daily tours over 110 miles.

Table 3 and Fig. 9 show BEV and VMT feasibility. Eighty-six per-
cent (13,499) of daily tours in the CHTS are shorter than 60 miles,
so they are considered feasible routes. The optimized station
network satisfies 93% of daily tours in the 60-110 mile range.
The station network can also satisfy 75% of daily tours over 110
miles. Consequently, with just 290 charger locations, BEV feasibil-
ity is 88% and 98% for long distance driving and all driving, respec-
tively. This is a stunning result compared to previous work on Level
2 charging infrastructure which showed BEV feasibility is 96% only
when 3.3 kW Level 2 charging is available everywhere [4].

With regard to VMT feasibility, the impact of fast charging
stations is different. For example, the VMT that are fulfilled by
60 mile BEVs with no public charging is only 55%, which indicates
that long distance driving accounts for significant VMT and fuel
consumption. The optimized Level 3 charging station network
increases the feasible VMT to 92% by capturing 91% of the
60-110 mile tours and 71% of the tours longer than 110 miles.

An increase of BEV feasibility to almost 100% will seemingly
make BEVs more acceptable to consumers in terms of the range
limit, and the increase of VMT feasibility to 92% would dramati-
cally increase BEV benefits related to petroleum use reduction
and tailpipe pollutant emissions.

3.3. Temporal distribution of charging events

Even with a sufficient Level 3 charging station network
installed, BEV drivers have to choose between multiple stations

along the candidate charging route. Table 4 shows the number of
charging stations along the candidate charging routes derived from
the 1469 feasible vehicles having 60-110 mile tours as shown in
Table 3. Approximately 58% of the BEVs have only one available
station. The remaining 42% can select from multiple stations on
their tours. The selection of charging sites will impact electricity
consumption, as well as charging station capacity. Thus, five charg-
ing station selection strategies were evaluated: random, as early as
possible, as late as possible, as cheaply as possible, and with a reser-
vation system. For the first four strategies, BEV drivers would only
consider the geographic information of the charging stations and
predict the arrival time at each station along their charging routes.
The drivers could then decide where to recharge their vehicles
according to the criteria of each strategy. These four strategies rep-
resent methods similar to those used by drivers to select gasoline
stations; the approach is simple for the driver and does not require
communication with charging stations or any other vehicle. The
fifth strategy (reservation system) provides BEV drivers the oppor-
tunity to reserve, on a first-come-first-serve basis, a charger for a
time period at a specific station prior to arrival such that schedule
conflict is avoided. Each BEV needs to find out the charging stations
on its charging route and the approximated time of arrival. At the
same time, it receives, from the stations, what times have been
blocked at each charging station. Then, the BEV locally calculates
where the charging should happen such that the waiting time is
minimized. Finally, it sends the reserved time window back to
the station it will stop at. This is an idealized reservation system
that serves to preliminarily show the benefit of a reservation
system. Other studies more fully evaluate algorithms for use in
more practical reservation systems [37-41]. With ever-increasing
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Fig. 7b. Optimized charging locations for BEV100 (left) and BEV200 (right) in California.
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Fig. 8. An example tour for a vehicle requiring multiple fast charging events.

“smart” electronic capabilities available in phones, cars, and other
devices, the mechanics of such a reservation system are easy to
imagine.

Fig. 10 shows the distribution of charging events over 24 h for
the random and as late as possible station selection strategies. The
vehicle arrival time represents when vehicles enter a charging sta-
tion. It is important to note that the model accounts for the delay of
actual charging events due to limited station capacity. The esti-
mated charging profile is determined by assuming that BEVs would
be only sufficiently recharged (i.e., enough to return home). This
assumption stems from the likelihood that Level 3 charging will
be significantly more expensive than home charging and will,
therefore, persuade drivers to use Level 3 as little as possible.
Additional assumptions are listed in Table 5.

The charging profile of the random charging station selection
strategy shows peaks in the morning and afternoon. The afternoon
peak is longer and slightly larger than the morning peak.
Interestingly, this trend is nearly identical to the daily VMT distri-
bution during weekdays [42]. Also, the peak charging demand time
overlaps with typical diurnal electricity demand peaks [5]. The

Table 3
BEV and VMT feasibility for different charging requirement categories.

consequences of this overlap with typical electric demand peaks
would be increased peak electric load, higher time-of-use electric-
ity costs, and increases in GHG and pollutant emission compared to
other charging strategies [5].

The as late as possible station selection strategy requires no
planning for the driver and has the potential to most extend the
range of BEVs. However, from the grid perspective, the as late as
possible strategy appears to be the worst case, as shown by the
charging profile that exhibits a single large peak from 4 pm to
7 pm.

The as early as possible strategy results are shown in Fig. 11. This
strategy demonstrates a large peak at 8 am. Although this strategy
shifted the BEV charging profile peak, substantial charging events
occur during the day for the three scenarios examined thus far.
This implies that different Level 3 charging strategies cannot sub-
stantially shift BEV electrical loads from the day to the night.

Interestingly, the as cheaply as possible strategy shown in Fig. 11
is nearly identical to the as early as possible strategy. The electricity
pricing for this strategy was based on the PG&E summer weekday
PEV charging rates and previous work [4,43,44]. The small differ-
ences when compared to the as early as possible strategy are the
slightly reduced charging events in the late afternoon and the
slightly increased charging events late at night.

The reservation system strategy shown in Fig. 12 provides more
evenly distributed charging events throughout the day. The reser-
vation strategy has similar trends as the previous two strategies,
however, the reservation strategy has a lower peak in the morning
and more charging events in the afternoon.

From these results, it can be summarized that: (1) most of the
Level 3 charging events and charging load will occur in the daytime
no matter what station selection strategies are used; (2) both
random charging and late charging would increase the grid
demand in the afternoon; (3) early, cheap and reserve strategies
have similar trends with a short peak from 8 am to 9 am and would
be preferred given current electricity demand profiles.

It should also be noted from these results that the owners of
these charging stations will have electricity demand profiles that
have large peaks regardless of the station selection strategy and
will impact their cost of electricity that they pay to the electric util-
ity. This will primarily occur because the charging peaks will incur
higher demand charges on the station owner than if the charging
profile was nearly flat. Electric utility rate structures are typically
classified into energy and demand charges. Energy charges are
those paid for each kW h used. Demand charges are collected in
different ways, but a typical way is to charge the customer based
on their peak demand in a month. Therefore, the higher the peak
demand the higher the cost of electricity. This situation will be
exacerbated for those owners that already have electric loads in
addition to the newly installed Level 3 chargers. Additionally,
since these peaks typically occur during the day, if the owner’s
station or property is on a time-of-use rate structure then the
owner could experience even higher demand charges. This results
from time-of-use demand charges being higher during peak load
periods of the day. This issue warrants further investigation by

Total No L3 charging required Need L3 Need L3 once Need more than once
Total # of vehicles 15,703 13,499 2204 1584 620
BEV feasible 15,434 13,499 1935 1467 466
Percentage 98% 100% 88% 93% 75%
Total VMT 498,692 273,842 224,849 124,856 99,993
BEV feasible 458,653 273,842 184,810 113,480 71,330
Percentage 92% 100% 82% 91% 71%
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1 Charge More 0.00% 0.00% 2.97% 14.30%
= Charge Once 0.00% 0.00% 9.34% 22.91%
B No Need 85.96% 54.91% 85.96% 54.91%

Fig. 9. BEV and VMT feasibility with and without the optimized fast charging station network.

Table 4
Number of vehicles versus available stations on the candidate charging route.

Available stations Frequency (vehicle) Cumulative (%)

1 848 57.81
2 397 84.87
3 176 96.86
4 42 99.73
5 3 99.93
6-10 1 100.00

policymakers to ensure that electric rate structures are not hinder-
ing fast charger deployment or cause fast charger stations to be
abandoned after the cost of electricity becomes too high.

3.4. Wait time and station usage

Charging event distribution, potential wait time capacity issues,
and charging cost (energy charges only) have also been assessed.
These factors have been estimated based on the five charging
station selection strategies. If there is any schedule conflict, it is
assumed that the next driver’s charging event begins immediately
when the previous one finishes, otherwise it begins upon arrival at

the station incurring a zero wait time. The waiting events and wait
times are calculated and accumulated at each station. The electric-
ity cost is the product of the charging load and the PG&E summer
weekday PEV charging rates for the given time of day when charg-
ing occurs [44]. The results shown here are for the 1467 vehicle
tours in Table 3 and analyze coverage versus capacity require-
ments for vehicle fueling infrastructure.

3.4.1. One charger per station

Table 6 shows the results for all the five scenarios with only one
charger at each station. Comparisons are made from two perspec-
tives: (1) the convenience and electricity cost for BEV drivers and
(2) the benefit for station operators. It should be noted that the
results for the random station selection strategy are different for
each model run and the results here depict the average value for
a total 10 runs.

Wait events exist for all of the strategies with late charging hav-
ing the most, followed by early, cheap, and random charging. A
reservation system decreases the number of wait events from 200
to less than 50. A reservation system would also make the average
wait time at least 70% shorter than any other scenario. Although
the average wait times per vehicle are all below 1.5 min which
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Fig. 10. BEV arrival time and charging load distribution for random and late charging.
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Table 5
BEV operating and charging parameters.

Electricity consumption rate (DC) Charging efficiency

Charging rate

Station selection Charging strategy

0.31 kW h/mi 0.85

2 miles/min

Random, late, early, cheap, reserve Sufficient recharge

appears very low and acceptable, the average wait time per wait
event is always greater than 8.5 min for non-reservation charging.
Consequently, if the wait events occur, drivers would have to
spend a relatively long time waiting. The maximum accumulated
wait time is the maximum of the accumulated wait times of all
290 stations. In the worst case, the maximum accumulated wait
time is nearly 7h for the late charging strategy. For the other
non-reservation charging strategies, the maximum wait time is
around two and half hours, but the reservation system can decrease
this value dramatically to less than 1 h. The same trend can be seen
for the maximum wait events. As for the electricity cost, results
range from $1.35 to $2.10 per charge. The cheap charging strategy
provides the lowest electricity cost, but is only slightly better than
early charging and reserve charging.

From the perspective of the station owner or operator, all charg-
ing strategies result in 5 charging events per station on average

since the total station and vehicle numbers are fixed. However,
the reserve charging strategy provides a much lower standard devi-
ation for the charging events because charging events are more
evenly distributed at all the stations. Consequently, charger opera-
tors may prefer a reservation system strategy.

3.4.2. More chargers to decrease wait time

In order to better understand the inconvenience caused by the
station capacity limitations, additional chargers are assigned
within the model to the stations with the longest accumulated
wait times. Therefore, the relationship between extra chargers,
wait events, and wait time is investigated. Figs. 13a and 13b show
the results for cheap and reserve station selection strategies,
respectively. Just three to four additional chargers for the cheap
charging strategy could bring the maximum accumulated wait
time and number of wait events to the same level as the original
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Fig. 11. BEV arrival time and charging load distribution for early and cheap charging.
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Table 6
Wait time, wait event, electricity cost, and station operating status for different station selection strategies.
Total wait  Total Average wait time  Average wait Maximum Maximum Electricity Average Standard
time wait for 1467 vehicles time for wait wait events at  accumulated wait time  cost per charges/ deviation of
(minutes) events (minutes) events (minutes)  any station at any station charge station charging
(minutes) (dollar) distribution
Random 1189 129.9 0.81 9.15 9.7 184.28 1.75 5.06 0.91
Late 2216 200 1.51 11.08 15 415.17 2.10 5.06 1.48
Early 1679 175 1.14 9.59 12 150.54 1.38 5.06 1.27
Cheap 1471 169 1.00 8.71 12 150.54 1.35 5.06 1.24
Reserve 313 46 0.21 6.81 3 47.49 1.45 5.06 0.47
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Fig. 13a. Extra chargers vs. maximum wait time and event.

reserve charging strategy. More chargers do little to further
improve the results. As for the total wait time and total wait
events, the reserve charging continuously shows a substantial
improvement compared to cheap charging, regardless of additional
charger installations. Consequently, the additional chargers for
cheap charging might effectively mitigate the extreme conditions
at specific stations, but the system-wide benefit is limited.
Similar results were observed with the other non-reservation sta-
tion selection strategies

4. Discussion

The methodology and the optimal solution discussed in this
work require that two main conditions be satisfied such that the
analysis is accurate. The first condition involves candidate loca-
tions and the assumption that all land owners are willing to install
chargers (i.e., the real candidate locations are not difficult to find).
The second condition is that the optimization be implemented at
one time for a relatively large area. Existing policies and regula-
tions obstruct using land for charging stations, which impacts sat-
isfying the first condition. Some cities view the marking of stalls for
EV charging as a loss of stalls. Policy could be designed to encour-
age the conversion of parking stalls to EV charging stalls.
Additionally, most cities’ zoning codes do not address EV charging
stations further complicating installations. Commercial and resi-
dential zoning codes should include language stating whether a
charging station is allowed as well as some details on guidance
for approval to make station planning more efficient. With regard
to the second condition, multiple entities in the same area are
always involved in station allocation. For instance, in southern
California, utilities, automakers, governments and some fast
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Cheap total wait time
#EEE Reserve total wait time
=== Cheap total wait event

Reserve total wait event

Fig. 13b. Extra chargers vs. total wait time and event.

charging oriented companies are all planning station installations,
but might not communicate with each other. This gives rise to deci-
sions based on inadequate information leading to redundant plans
and/or waste. An agency such as the California Energy Commission
could provide a platform where stakeholders can exchange informa-
tion, and a third party, such as universities or other agencies, can
provide un-biased information and optimized solutions. Better infor-
mation effectively supports a better station network roll out.

The parameters for BEV range used in this study are conserva-
tive and provide a “worst case” scenario. Longer BEV range will
result in a decreased need for charging stations, but the optimized
station allocations in this study will satisfy any longer range BEVs
with at least the same BEV feasibility. The reason is that the candi-
date charging route generated by a shorter range BEV is also a por-
tion of the longer range BEV candidate charging route. Future
research should be focused on combinations of different BEV
ranges and the corresponding requirements of the fast charging
stations. It will be valuable to investigate more cost effective ways
to deploy BEVs (e.g., shorter BEV range with more charging stations
or longer BEV range with fewer charging stations).

The arrival times at the fast charging stations are estimated val-
ues because linear referencing is used assuming BEVs are driven at
constant speeds for any specific trip. The wait times and waiting
events are also estimated values because the actual charging time
is generally non-linear and depends on the state of the vehicle bat-
tery. The time to setup the charging equipment should be much
shorter compared to the real charging time, thus it is not consid-
ered in the model to accumulate extra charging time.

Compared to non-home Level 2 EVSE, the number of fast charging
stations is significantly lower. Approximately 25 Level 2 EVSE (plus
home charging at all residences) are required per 100 BEVs to
achieve a 96% BEV feasibility, as described in a previous study [4].



L. Zhang et al./ Applied Energy 157 (2015) 111-122 121

However, the quantity of Level 3 chargers required to achieve 98%
BEV feasibility is just 2 chargers per 100 vehicles (plus home charg-
ing at all residences). Furthermore, it is less difficult to optimize the
exact Level 3 station allocations compared to the statistical EVSE dis-
tributions at different location categories for Level 2 charging.

For a BEV with 60 mile range, the 98% BEV feasibility and the
92% VMT feasibility shown in the results imply the upper bound.
It is also possible that drivers will switch back to conventional
vehicles for long distance tours rather than use fast charging
BEVs since it would require behavioral changes and upwards of
30 min charging times. This is an especially important concern
for those drivers needing more than one fast charge in a day.
Technology to further increase the charging rate, and BEVs with
longer range will mitigate this concern.

The methodology proposed in this study can be applied to other
areas using travel pattern data other than CHTS as well as different
BEV parameters. The model presented solves for approximate
charging station allocation. The analysis can also be performed
with existing or proposed Level 3 charging locations included in
the network. In this case, the tours served by the existing or pro-
posed charging locations will be ignored in the optimization. This
would be highly advantageous for government agencies deploying
many of the fast charging stations.

Although the CHTS includes data covering the whole state of
California, actual BEV deployment will likely concentrate in certain
areas. Consequently, the rollout plan for station allocation must
consider real BEV deployment. Due to the limited data available,
the amount of chargers required at each station to serve a specific
number of BEVs in the future (e.g., 1 million BEVs) cannot be fully
addressed. However, by scaling the current results, an upper bound
can be established that not more than 1 Level 3 charger will be
required per 50 vehicles.

5. Conclusions

A model that optimizes Level 3 charging station allocation and
the temporal utilization of charging stations has been developed
and applied. The CHTS serves provides travel pattern data in
California, and vehicle parameters are based on commercial
BEVs. The candidate charging route was defined for vehicles that
require one fast charge per daily tour, and aggregated freeway exits
and highway intersections were used as approximate candidate
charging locations. This formulated a classic set covering problem.
In addition, several charging station selection strategies were
investigated to understand the utilization of the charging stations.
From the methodology, data, results, and discussion above, the fol-
lowing conclusions are drawn:

1. By using around 3000 aggregated freeway exits and highway
intersections as the approximate candidate charging locations,
290 locations are determined to be the minimum number
required to meet CHTS driver needs. This network is shown to
provide good coverage with 98% BEV feasibility and 92% VMT
feasibility. The near 100% BEV feasibility can facilitate BEV con-
sumer acceptance by mitigating range anxiety, and the high
VMT feasibility can lead to significant reductions in petroleum
consumption and tailpipe emissions. Compared to non-home
Level 2 EVSE, the Level 3 station allocation is more precisely
prescribed and provides a higher BEV feasibility. A maximum
of two Level 3 chargers will be required per 100 BEVs to enable
98% of drivers to rely on BEVs and to replace 92% of current pet-
roleum miles travelled with electric miles travelled.

2. The temporal distribution of charging events and charging load
profiles are evaluated with five charging station selection
strategies. Most of the events and load will occur in the daytime

regardless of strategy. Both random and late charging will
increase the grid demand in the afternoon. The early, cheap
and reserve strategies have similar trends of evenly distributed
charging during the day with a short peak from 8 am to 9 am.
These strategies are preferrable since they do not contribute
to the peak loads on the electric grid.

3. Areservation system can dramatically reduce the wait time and
number of wait events as well as utilize all the stations more
evenly. With only one charger per station the congestion and
wait time at some locations would be unacceptable for the
1467 drivers considered in this study. A reservation system or
the installation of extra chargers would reduce congestion.
More travel pattern data are required to fully understand the
required chargers at a specific station for a specific future BEV
penetration.

4. Policies should be designed to encourage the conversion of
parking stalls to EV charging stalls. Policymakers should
encourage rate structures that support fast charging by altering
or removing the demand charge for those customers with fast
chargers installed. A state level government agency should pro-
vide a platform where stakeholders can exchange information
so that a cost effective station network can be built. Fast charger
operators should collaborate on implementing a reservation
system.
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