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Abstract: The market for plug-in electric vehicles (EVs) exhibits indirect network
effects due to the interdependence between EV adoption and charging station invest-
ment. Through a stylized model, we demonstrate that indirect network effects on
both sides of the market lead to feedback loops that could alter the diffusion process
of the new technology. Based on quarterly EV sales and charging station deployment
in 353 metro areas from 2011 to 2013, our empirical analysis finds indirect network
effects on both sides of the market, with those on the EV demand side being stron-
ger. The federal income tax credit of up to $7,500 for EV buyers contributed to
about 40% of EV sales during 2011–13, with feedback loops explaining 40% of that
increase. A policy of equal-sized spending but subsidizing charging station deploy-
ment could have been more than twice as effective in promoting EV adoption.
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THE ELECTRIFICATION of the transportation sector through the diffusion of plug-
in electric vehicles (EVs), coupled with cleaner electricity generation, is considered a
promising pathway to reduce air pollution from on-road vehicles and to strengthen
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energy security. The US transportation sector contributes to nearly 30% of US total
greenhouse gas emissions, over half of carbon monoxide and nitrogen oxides emis-
sions, and about a quarter of hydrocarbons emissions in recent years. It also accounts
for about three-quarters of US petroleum consumption. Different from conventional
gasoline vehicles with internal combustion engines, plug-in electric vehicles (EVs) use
electricity stored in rechargeable batteries to power the motor, and the electricity
comes from external power sources. When operated in all-electric mode, EVs con-
sume no gasoline and produce zero tailpipe emissions. But emissions shift from on-
road vehicles to electricity generation, which uses a domestic fuel source. The environ-
mental benefit critically depends on the fuel source of electricity generation.1

Since the introduction of the mass-market models into the United States in late
2010, monthly sales of EVs have increased from 345 in December 2010 to 13,388
in December 2015.2 Despite the rapid growth, the market share of electric cars is still
small: the total EV sales only made up 0.82% of the new vehicle market in 2015. In
the 2011 State of the Union address, President Obama set up a goal of having 1 mil-
lion EVs on the road by 2015. Based on the actual market penetration, the goal was
met less than halfway.3

As a new technology, EVs face several significant barriers to wider adoption, in-
cluding the high purchase cost, limited driving range, the lack of charging infrastruc-
ture, and long charging time. Although EV owners can charge their vehicles overnight
at home, given the limited driving range, consumers may still worry about running out
of electricity before reaching their destination. This issue of range anxiety could lead to
reluctance to adopt EVs especially when public charging stations are scarce. At the
same time, private investors have less incentive to build charging stations if the size
of the EV fleet and the market potential are small. The interdependence between the
two sides of the market (EVs and charging stations) can be characterized as indirect net-
work effects (or the chicken-and-egg problem): the benefit of adoption/investment on
one side of the market increases with the network size of the other side of the market.

The objective of this study is to empirically quantify the importance of indirect net-
work effects on both sides of the EV market and examine their policy implications.
This is important for at least two reasons. First, while industry practitioners and pol-
1. Holland, Mansur, and Muller (2015) find considerable heterogeneity in environmental
benefits of EV adoption depending on the location and argue for regionally differentiated EV
policy.

2. From 1996 to 1998, GM introduced over 1,000 first-generation EVs (EV1) in California,
mostly made available through leases. In 2003, GM crushed their EVs upon the expiration of
the leases.

3. Similar national goals exist in many other countries: the Chinese government set up a goal
of half a million EVs on the road by 2015 and 5 million by 2020. The German government
developed an initiative to reach 1 million EVs by 2020.
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icy makers often use the chicken-and-egg metaphor to characterize the challenge faced
by this technology, we are not aware of any empirical analysis on this issue. Examining
the presence and the magnitude of indirect network effects is important in under-
standing the development of the EV market. If indirect network effects exist on both
sides of the market, feedback loops arise. The feedback loops could exacerbate shocks,
whether positive or negative, on either side of the market (e.g., gasoline price changes or
government interventions) and alter the diffusion path. Ignoring feedback loops could
lead to underestimation of the impacts of policy and nonpolicy shocks in this market.

Second, indirect network effects could have important policy implications. As we
describe below, policy makers in the United States and other countries are employing
a variety of policies to support the EV market. When promoting consumer adoption
of this technology, they can subsidize EV buyers or charging station investors or a
combination of the two. Both our theoretical and empirical analyses show that the na-
ture of indirect network effects largely determines the effectiveness of different poli-
cies. Therefore, understanding indirect network effects could help develop more effec-
tive policies to promote EV adoption.

Taking advantage of a rich data set of quarterly new EV sales by model and de-
tailed information on public charging stations in 353 Metropolitan Statistical Areas
(MSAs) from 2011 to 2013, we quantify indirect network effects on both sides of
the market by estimating two equations: a demand equation for EVs that quantifies
the effect of the availability of public charging stations on EV sales, and a charging
station equation that quantifies the effect of the EV stock on the deployment of charg-
ing stations. Recognizing the endogeneity issue due to simultaneity in both equations,
we employ an instrumental variable strategy to identify indirect network effects. To
estimate the network effects of charging stations on EV adoption, we use a Bartik
(1991)–style instrument for the endogenous number of electric charging stations,
which interacts national charging station deployment shock with local market condi-
tions: number of grocery stores and supermarkets. To estimate the network effects of
EV stock on charging station deployment, we use current and historic gasoline prices
to instrument for the endogenous cumulative EV sales. Across various specifications,
our analysis finds statistically and economically significant indirect network effects on
both sides of the market. The estimates from our preferred specifications show that a
10% increase in the number of public charging stations would increase EV sales by
about 8%, while a 10% growth in EV stock would lead to a 6% increase in charging
station deployment.

With the parameter estimates, we examine the effectiveness of the federal income
tax credit program which provides new EV buyers a federal income tax credit of up to
$7,500.4 Our simulations show that the $924.2 million subsidy program contributed
4. Throughout our analysis, we treat the tax credit as a full-amount rebate due to the lack of
household-level data in our analysis. EV buyers are more affluent than average vehicle buyers,
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to 40.4% of the total EV sales during this period. Importantly, our analysis shows that
feedback loops resulting from indirect network effects in the market accounted for
40% of that sales increase, a significant portion. Our simulations further show that
if the $924.2 million tax incentives were used to build charging stations instead of sub-
sidizing EV purchase, the increase in EV sales would have been twice as large. The
better cost effectiveness of the subsidy on charging stations relative to the income
tax credit for EV buyers is due to (1) strong indirect network effects on EV demand
and (2) low price sensitivity of early adopters.

This study directly contributes to the following three strands of literature. First,
our study adds to the emerging literature on consumer demand for electric vehicles.
The Congressional Budget Office (CBO 2012) estimates the effect of income tax cred-
its for EV buyers based on previous research on the effects of similar tax credits on
traditional hybrid vehicles and finds that the tax credit could contribute to nearly
30% of future EV sales. DeShazo, Sheldon, and Carson (2014) use a statewide survey
of new car buyers in California to estimate price elasticities and willingness to pay for
different vehicles and then simulate the effect of different rebate designs. They esti-
mate that the current rebate policy in California that offers all income classes the same
rebate of $2,500 for battery electric vehicles (BEVs) and $1,500 for plug-in hybrid
vehicles (PHEVs) leads to a 7% increase in EV sales. Using market-level sales data,
our study offers a first analysis to quantify the role of indirect network effects in
the market and their implications on government subsidies.

Second, our study fits into the rich literature on indirect network effects. Previous
work on indirect network effects dates back to early theoretical studies such as Rohlfs
(1974), Farrell and Saloner (1985), and Katz and Shapiro (1985). Our paper is also
related to the emerging literature on two-sided markets that exhibit indirect network
effects.5 Theoretical work includes Caillaud and Jullien (2003), Armstrong (2006),
Hagiu (2006), Rochet and Tirole (2006), and Weyl (2010), and empirical work in-
cludes the PDA and compatible software market by Nair, Chintagunta, and Dube
(2004), the market of CD titles and CD players by Gandal, Kende, and Rob (2000),
the Yellow Pages industry by Rysman (2004), and the video game industry by Clements
and Ohashi (2005), Corts and Lederman (2009), Lee (2013), and Zhou (2014). In this
and their tax liability is likely to be over $7,500. According to the California Plug-in Electric Ve-
hicle Owner Survey (2014), among buyers of conventional new vehicles, 15% of households have
annual household income over $150,000 while among EV buyers, that share is 54% (https://
energycenter.org/clean-vehicle-rebate-project/vehicle-owner-survey/feb-2014-survey).

5. Although exhibiting indirect networks, the EV market differs from the canonical two-sided
markets in that there is no well-defined platform for buyers and sellers to interact. The automak-
ers sell EVs to consumers directly. Public charging stations serve as a backup to home charging
(e.g., a complementary good). The automakers do not charge charging stations loyalty fees or
membership fees, as is often the case in a two-sided market.
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strand of literature, our study is closest to Corts (2010) in topic which extends the lit-
erature to the automobile market and studies the effect of the installed base of flexible-
fuel vehicles (FFV) on the deployment of E85 fueling stations. Corts (2010) only fo-
cuses on indirect network effects on one side of the market and does not look at that
the effect of E85 fueling stations on FFV adoption.

Third, our analysis contributes to the rich literature on the diffusion of vehicles
with advance fuel technologies (e.g., hybrid vehicles) and alternative fuels (e.g., FFVs).
Kahn (2007), Kahn and Vaughn (2009), and Sexton and Sexton (2014) examine the
role of consumer environmental awareness and signaling in the market for traditional
hybrid vehicles. Heutel and Muehlegger (2012) study the effect of consumer learning
in hybrid vehicle adoption, focusing on the different diffusion paths of Honda Insight
and Toyota Prius. Several recent studies have examined the impacts of government
programs both at the federal and state levels in promoting the adoption of hybrid ve-
hicles, including Beresteanu and Li (2011), Gallagher and Muehlegger (2011), and
Sallee (2011). Both hybrid vehicles and EVs represent important steps in fuel econ-
omy technology. Environmental preference, consumer learning, and government pol-
icies are likely to be all relevant in the EV market. Our paper focuses on the key dif-
ference between these two technologies: indirect network effects in the EV market.
Huse (2014) examines the impact of government subsidy in Sweden on consumer
adoption of FFVs and the environmental impacts when consumers subsequently
choose to use gasoline instead of ethanol due to low gasoline prices. Based on natural-
istic driving data, Langer andMcRae (2014) show that a larger network of E85 fueling
stations would reduce the time cost of fueling and hence increase the adoption of
FFVs.

Section 1 briefly describes the industry and policy background of the study and the
data. Section 2 presents a simple model of indirect network effects and uses simula-
tions to show how feedback loops amplify shocks. Section 3 lays out the empirical
model. Section 4 presents the estimation results. In section 5, we present the policy
simulations and compare the existing income tax credit policy with an alternative pol-
icy. Section 6 concludes.

1. INDUSTRY AND POLICY BACKGROUND AND DATA

In this section, we first present industry background, focusing on important barriers to
EV adoption and then discuss current government policies. Next we present the data
used in the empirical analysis.

1.1. Industry Background

Tesla Motors played a significant role in the comeback of electric vehicles by introduc-
ing Tesla Roadster, an all-electric sports car, in 2006 and beginning general produc-
tion in March 2008. However, the model had a price tag of over $120,000, out of the
price range for average buyers. Nissan Leaf ($33,000) and Chevrolet Volt ($41,000)
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were introduced into the US market in December 2010, marking the beginning of the
mass market for EVs.

There are currently two types of EVs: battery electric vehicles (BEVs) which run
exclusively on high-capacity batteries (e.g., Nissan Leaf ), and plug-in hybrid vehicles
(PHEVs) which use batteries to power an electric motor and use another fuel (gaso-
line) to power a combustion engine (e.g., Chevrolet Volt). As depicted in figure 1,
quarterly EV sales increased from less than 2,000 in the first quarter of 2011 to nearly
30,000 in the last quarter of 2013, while the number of public charging stations has
increased from about 800 to over 6,000. Nevertheless, the EV market is still very
small: EV sales only made up 0.82% (or 113,889) of the total new vehicle sales in
the United States in 2015, and there are only about 12,500 public charging stations
as of March 2016, compared to over 120,000 gasoline stations.

There are several commonly cited barriers to EV adoption. First, EVs are more
expensive than their conventional gasoline vehicle counterparts. The manufacturer’s
suggested retail prices (MSRP) for the 2015 model of Nissan Leaf and Chevrolet Volt
are $29,010 and $34,345, respectively, while the average price for a comparable con-
ventional vehicle (e.g., Nissan Sentra, Chevrolet Cruze, Ford Focus, and Honda Civic)
is between $16,000 and $18,000. A major reason behind the cost differential is the
Figure 1. National quarterly EV sales and public charging stations. The quarterly EV sales
plotted include both BEV and PHEV sales. Source: Authors’ calculations using Hybridcars
.com monthly sales dashboard data and electric charging station location data by Alternative
Fuel Data Center of the Department of Energy.
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cost of the battery. As battery technology improves, the cost should come down. In
addition, lower operating costs of EVs can significantly offset the high initial purchase
costs.6 A recent study by EPRI (2013) compares the lifetime costs (including pur-
chase cost less incentives, maintenance, and operation) of vehicles of different fuel
types and finds that under reasonable assumptions, higher capital costs are well bal-
anced by savings in operation costs: EVs are typically within 10% of comparable hy-
brid and conventional gasoline vehicles.

The second notable barrier to EV adoption is the limited driving range. BEVs have
a shorter range per charge than conventional vehicles have per tank of gas, contributing
to consumer anxiety of running out of electricity before reaching a charging station.
Nissan Leaf, the most popular BEV in the United States, has an EPA-rated range
of 84 miles on a fully charged battery in 2015. Chevrolet Volt has an all-electric range
of 38 miles, beyond which it will operate under gasoline mode. This range is sufficient
for daily household vehicle trips but may not be enough for longer distance travels.

The third barrier, closely related to the second, is the lack of charging infrastruc-
ture. A large network of charging stations can reduce range anxiety and allow PHEVs
to operate more under the all-electric mode to save gasoline.7 There are two types of
public charging stations: 240 volt AC charging (level 2 charging) and 500 volt DC
high-current charging (DC fast charging), with the former being the dominant type.
The installation of charging stations involves a variety of costs, including charging sta-
tion hardware, other materials, labor, and permits. A typical level 2 charging station
for public use has three to four charging units and costs about $27,000, while a DC
fast charging station costs over $50,000.8 Charging stations can be found at workplace
parking lots, shopping centers, grocery stores, restaurants, dealers, and existing gaso-
6. For a regular EV such as Nissan Leaf, the fuel cost of traveling 100 miles is about $3.6
assuming that it takes 30 kilowatt hours (kWh) to drive the distance and the electricity price is
12 cents per kWh. For a conventional gasoline vehicle, the fuel cost is about $14 assuming the
fuel economy of 25 mpg and gasoline price at $3.5 per gallon.

7. According to the California Plug-in Electric Vehicle Owner Survey (2014), 71% of EV
owners expressed dissatisfaction with public charging infrastructure, coming down from 83% in
2012 (https://energycenter.org/clean-vehicle-rebate-project/vehicle-owner-survey/feb-2014
-survey).

8. According to the charging station cost report by US Department of Energy Vehicle Tech-
nologies Office (2015), the cost of a level 2 EV charging unit for public use is between $3,000
and $6,000, and the installation fee is from $600 to $12,700 per unit. Using the average equip-
ment cost ($ 4,500) and installation fee ($3,000) per unit, the total cost of installing a charging
station of an average size (3.6 charging units) comes at $27,000. This estimate does not include
future maintenance and operating cost and is therefore a lower bound estimate. Note 28 pro-
vides a upper bound estimate, which includes those costs. See “Costs Associated with Non-
residential Electric Vehicle Supply Equipment” (http://www.afdc.energy.gov/uploads/publication
/evse_cost_report_2015.pdf ).
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line stations, a point that we will come back to when constructing the instrument for
the number of charging stations in the EV demand estimation. Owners of charging
stations are often motivated by a variety of considerations such as boosting their sus-
tainability credentials, attracting customers for their main business, and providing a
service for employees. Charging stations are often managed by one of the major na-
tional operators such as Blink, ChargePoint, and eVgo.

The fourth barrier is the long charging time. It takes much longer to charge EVs
than to fill up gasoline vehicles. A BEV may not be able to get fully charged overnight
if just using a regular 120 volt electric plug (e.g., it takes 21 hours for a Nissan Leaf to
get fully charged). To get faster charging, BEV drivers either need to install a charging
station at home or go to public charging stations. It takes six to eight hours to fully
charge a Nissan Leaf at a level 2 charging station and only 10–30 minutes at a DC
fast charging station.9 Unlike BEVs, PHEV batteries can be charged not only by
an outside electric power source, but by the internal combustion engine as well. Hav-
ing the second source of power may alleviate range anxiety, but the shorter electric
range limits the fuel cost savings from EVs.

1.2. Government Policy

The diffusion of electric vehicles together with a clean electricity grid can be an effec-
tive combination in reducing local air pollution, greenhouse gas emissions, and oil de-
pendency. The EV technology is widely considered as representing the future of pas-
senger vehicles. The International Energy Agency projects that by 2050, EVs have the
potential to account for 50% of light duty vehicle sales.10 Many countries around the
world have developed goals to develop the EV market and provide support to promote
the diffusion of this technology (Mock and Zhang 2014).11

To reduce the price gap between EVs and their gasoline counterparts, the Energy
Improvement and Extension Act of 2008, and later the American Clean Energy and
Security Act of 2009, grant a federal income tax credit for new qualified EVs. The
9. Consumers do not need to wait for the battery to get fully charged before operating their
vehicles again. They can recharge batteries by a certain amount depending on the duration of
their stay at the charging locations while working, shopping, or running errands. Public charging
stations mainly serve as a backup or complementary charging option to alleviate EV drivers’
range anxiety. A concern toward DC fast charging is that it can reduce battery life due to the
nature of charging. In addition, DC fast charging on a large scale can create demand spikes on
the local electricity grid and exacerbate peak demand.

10. Hydrogen vehicles (not yet mass produced) will account for the majority of the remain-
der (https://www.iea.org/publications/freepublications/publication/EV_PHEV_Roadmap
.pdf ).

11. The Chinese government provides a rebate of over $9,000 to BEV buyers and nearly
$8,000 for PHEV buyers. The UK government offers a grant of up to $7,800 to EV buyers.
In Japan, EV buyers were eligible for a subsidy of up to $10,000 in 2013 and $8,500 in 2014.
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minimum credit is $2,500 and the credit may be up to $7,500, based on each vehicle’s
battery capacity and the gross vehicle weight rating. Moreover, several states have es-
tablished additional state-level incentives to further promote EV adoption such as tax
exemptions and rebates for EVs and nonmonetary incentives such as high occupancy
vehicle (HOV) lane access, toll reduction, and free parking. California, through the
Clean Vehicle Rebate Project, offers a $2,500 rebate to BEV buyers and a $1,500 re-
bate to PHEV buyers. In addition, federal, state, and local governments provide fund-
ing to support charging station deployment. For example, the Department of Energy
provided ECOtality Inc. a $115 million grant to build residential and public charging
stations in 22 US cities in collaboration with local project partners.

Government intervention in this market could be justified from the following per-
spectives. First, indirect network effects in the EVmarket represent a source of market
failure since marginal consumers/investors only consider the private benefit in their
decision, and the network size on both sides is less than optimal (Liebowitz and
Margolis 1995; Church, Gandal, and Krause 2002). In addition, given the nature
of the market, each side of the market is unlikely to internalize the external effect
on the other side through market transactions. If EVs are produced by one automaker,
the automaker would have an incentive to offer a charging station network to increase
EV adoption. Nissan and GM are the two early producers of EVs, but more and more
auto makers are entering the competition. Nissan is a large owner of charging stations
but GM is not.12

Second, the external costs from gasoline consumption in the United States and
many countries around the world are not properly reflected by the gasoline tax (Parry
and Small 2005; Parry et al. 2014). Compared to conventional gasoline vehicles, EVs
offer environmental benefits when the electricity comes from clean generation such as
renewables. In regions that depend heavily on coal or oil for electricity generation, EVs
may not demonstrate an environmental advantage over gasoline vehicles.13 Electricity
generation continues to become cleaner around the world due to the adoption of
abatement technologies (e.g., scrubbers), the deployment of renewable generation, and
the switch from coal to natural gas. In addition, technologies are being developed
12. Tesla is building its own proprietary network for Tesla owners only. This suggests that
they recognize the importance of charging stations in EV adoption, but this would create du-
plicate systems.

13. Zivin, Kotchen, and Mansur (2014) estimate marginal CO2 emissions of electricity pro-
duction that vary by location and time of the day, and they find that charging EVs in some re-
gions (the upper Midwest) during the recommended off-peak hours of midnight to 4 a.m. even
generates more carbon emissions than the average conventional gasoline vehicle on the road.
The environmental benefit of EVs under a different fuel mix of electricity generation is still
an active research topic, and a critical element that has not been well understood in the literature
is what types of vehicles (hybrid or gasoline vehicles) EVs replace.
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to integrate EVs and renewable electricity generation such as solar and wind. The in-
tegration of the intermittent energy source with EV charging not only can help EVs
fully realize its environmental benefits but also can leverage EV batteries as a storage
facility to address the issue of intermittency and serve as an energy buffer (Lund and
Kempton 2008).

Third, technology spillovers among firms often exist, especially in the early stage of
new technology diffusion (Stoneman and Diederen 1994). The development of EV
technology requires significant costs, but the technology know-how once developed
can spread through many channels, including worker migration and the product mar-
ket. Bloom, Schankerman, and van Reenen (2013) estimate that the social returns to
R&D are larger than the private returns due to positive technology spillovers, implying
underinvestment in R&D. In addition, the social returns to R&D by larger firms are
larger due to stronger spillovers.

1.3. Data

We construct a panel data set consisting of quarterly EV sales by vehicle model and
the number of charging stations available at 353 MSAs from 2011 to 2013. Table 1
presents summary statistics of the variables used in our regression analysis. Data on
quarterly vehicle sales of each EV model in each MSA are purchased from IHS Au-
tomotive. The sales data include 17 EV models: 10 BEVs and 7 PHEVs. Due to dif-
ferent introduction schedules, there were two vehicle models in our 2011 data: Nissan
Leaf and Chevrolet Volt. The 2012 data include four more vehicle models: Ford
Focus EV,Mitsubishi i-MiEV, Fisker Karma, and Toyota Prius Plug-in. The 2013 data
include 11 additional models: Honda Accord Plug-in, Ford C-Max Energi, Cadillac
ELR, Honda Fit EV, Fiat 500E, Smart ForTwo Electric Drive, Tesla Model S, Porsche
Panamera, Toyota RAV4, Chevrolet Spark EV, and Ford Transit Connect EV. In
2013, the top four EV models are Nissan Leaf, Chevrolet Volt, Tesla Model S, and
Toyota Prius plug-in with market shares (sales) of 25.8% (22,610), 24.4% (23,094),
17.4% (18,650), and 9.4% (12,088), respectively.

For our analysis, we focus on the 353 MSAs (out of 381 MSAs in total) for which
observations are available in all three years, and their EV sales accounted for 83% of
the national EV sales during our data period. Panel A of figure 2 depicts the spatial
pattern of EV ownership (the number of EVs per million people) in the last quarter of
2013. It shows that large urban areas have a higher concentration of EVs. The MSA
with the highest concentration is San Jose–Sunnyvale–Santa Clara, CA, with 5,608
EVs per million people by the end of 2013. The next two MSAs are both nearby: San
Francisco–Oakland–Fremont and Santa Cruz–Watsonville. The MSA with the low-
est concentration is Laredo, TX, with only 36 EVs per million people (nine EVs with
a population of a quarter of a million).

We obtain detailed information on locations and open dates of all charging stations
from the Alternative Fuel Data Center (AFDC) of the Department of Energy. By
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matching the ZIP code of each charging station to an MSA and using the station open
date, we construct the total number of public charging stations available in each quar-
ter for each MSA. Panel B of figure 2 shows the spatial distribution of charging sta-
tions (the number of charging stations per million people). The pattern is very similar
to what we observe in panel A for EV ownership. The correlation coefficient between
the two variables is 0.63, partly reflecting the interdependence of EVs and charging
stations. The top three MSAs with the most charging stations per million people
are Corvallis, OR, Olympia, VA, and Napa, CA, with 210, 170, and 117 public
charging stations per million people, respectively. These three MSAs are the number
eleventh, fifth, and sixth in terms of the EV concentration in panel A.
Table 1. Summary Statistics

Variable Mean SD

A.Vehicle demand equation:
Sales of an EV model 9.62 40.01
Gasoline prices ($) 3.52 .26
EV retail price – tax incentives ($) 33,161 18,569
No. of charging stations 22.13 45.74
Residential charging stations from the EV project 9.21 65.41
Annual personal income ($) 41,607 82,536
Hybrid vehicle sales in 2007 945 1,859
No. of grocery stores 278 624
Average commute (minutes) 22.96 3.37
College graduate share .40 .07
Use public transport to work share .02 .03
Drive-to-work share .88 .05
Share of white residents .78 .11
No. of observations 14,563

B.Charging station equation:
No. of charging stations 9.94 28.13
No. of EV installed base 134 584
Charging station tax credit (%) 4.56 14.7
Public funding or grants .33 .47
No. of grocery stores 186 455
Hybrid vehicle sales in 2007 568 1,354
Current gasoline prices ($) 3.49 .27
Gasoline price last year ($) 3.25 .39
Gasoline price two years ago ($) 2.78 .59
Gasoline price three years ago ($) 2.78 .58
State EV incentives (rebates 1 tax credits) ($) 1,575 3,121
No. of observations 4,236
This content downloaded from 050.100.116.095 on F
All use subject to University of Chicago Press Terms and Condition
ebruary 06, 2019 12:1
s (http://www.journal
6:44 PM
s.uchicago.edu/t-and-c).



100 Journal of the Association of Environmental and Resource Economists March 2017
We collect data on state-level incentives such as tax credits and rebates for both
electric vehicles and charging stations from AFDC. From the American Chamber
of Commerce cost-of-living index database, we collect quarterly gasoline prices for
each MSA from 2008 to 2013. Household demographics are collected from the
American Community Survey.

2. A MODEL OF INDIRECT NETWORK EFFECTS

In this section, we use a stylized model to illustrate indirect network effects on both
sides of the market (EV demand and charging station investment) and to show how
indirect network effects give rise to feedback loops. We then conduct simulations to
shed light on how the effectiveness of different types of policies (e.g., subsidizing EV
Figure 2. Spatial distribution of EVs and public charging stations. A, Installed base of EVs
per million people. B, Public charging stations per million people. Map boundaries define met-
ropolitan statistical areas. Both graphs are shown for the fourth quarter of 2013.
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purchases versus charging station investment) hinges on the relative magnitude of in-
direct network effects on the two sides as well as consumer price sensitivity. The re-
sults from the simulations provide a theoretical basis for our empirical findings based
on real-world data.

2.1. Model Setup and Properties

We assume that EV sales qt(Nt, pt, xt) depends on the number of public charging sta-
tions in the market (Nt), the price of the EV (pt), and other product characteristics
combined (xt) that affect consumers’ choice, such as the fuel cost.14 The installed base
of EVs is the cumulative sum of EV sales minus scrappage by the time t, denoted by
Q t 5 ot

h51qh*st,h, where st,h is the survival rate at time t for EVs sold in time h. The
number of charging stations that have been builtNt(Qt, zt) depends on the EV market
size Qt and other variables combined zt that might affect the fixed cost of investment.
To facilitate the illustration, we specify the following functions for EV demand and
charging station deployment:

ln(qt) 5 β1 ln(Nt) 1 β2 ln(pt) 1 β3xt, (1)

ln(Nt) 5 g1 ln(Qt) 1 g2zt: (2)

The EV demand equation arises from a discrete choice model of vehicle demand and
follows closely the logit model using the market-level data as in Berry (1994). The
charging station equation can be derived from an entry model as in Gandal et al.
(2000), and we derive an empirical counterpart to this equation for our specific con-
text in the appendix.

The parameters β1 and γ1 capture the magnitude of the indirect network effects on
the two sides. Feedback loops (or two-way feedback) arise if both β1 and γ1 are non-
zero. Intuitively, a shock to the system, for example, an increase in xt, would change
EV sales qt, which would in turn affect the installed base Qt11. This would then lead
to changes in the number of charging stationsNt11 and hence affect qt11. The impact
would circle back and forth between these two equations. If both β1 and γ1 are
positive, positive feedback loops would arise, and they can amplify the shocks (either
positive or negative) in either side of the market, such as a tax credit for EV purchases
or subsidy on charging station investment. The parameter β2 (negative) is the price elas-
ticity of demand and captures consumer price sensitivity.

To understand the property of the system such as the existence of the steady state
and its property, we assume that the survival rate st, h is δ

t – h, where δ < 1. Further
14. We assume that there is only one EV model to ease exposition. Our empirical analysis is
at the vehicle model level and uses a richer specification.
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assume pt 5 p, xt 5 x, and zt 5 z. Substituting equation (2) into equation (1), we
have:

ln(qt) – β1g1 ln(qt 1 dQt–1) 5 β1g2z 1 β2 ln ðp) 1 β3x: (3)

The right-hand side β1g2z 1 β2 ln(p) 1 β3x is constant with respect to qt, and
we denote it by c. During period 1, Qt – 1 5 0. Solving the equation, we obtain q1 5
exp½c/(1 – β1g1)�. To solve for the steady state solution (q*, N*), we use the steady
state condition qt 5 qt11 5 q* and find:

q* 5 exp
c – β1g1 ln(1 – d)

1 – β1g1

� �
5 q1* exp

–β1g1 ln(1 – d)
1 – β1g1

� �
:

N * 5 exp g1
c – β1g1 ln(1 – d)

1 – β1g1
– g1 ln(1 – d) 1 g2z

� �
:

The stock of EVs in the steady state Q* 5 q*/(1 – d) where the outflow of EVs
due to scrappage is equal to the inflow from new EV sales.15 To examine the stability
of the steady state, we write Qt–1 5 qt–1 1 dQt–2 and substitute it into equation (3):
ln(qt) – β1g1ln(qt 1 dqt–1 1 d2Qt–2) 5 c. This defines an implicit function of qt 5
G(qt–1). When β1g1 < 1, it can be shown that G(0) > 0,G0() > 0, and G00() < 0.
Therefore, the steady state solution is stable as shown in figure 3. In our following
policy analysis, we take β1g1 < 1, which is also confirmed in our empirical analysis.

The partial effect of vehicle price p on EV sales in the steady state is:

∂q*

∂p
5 exp

c – β1g1 ln(1 – d)
1 – β1g1

� �
β2

1 – β1g1
,

where β2 < 0. When β1g1 < 1, this partial effect is negative as economic theory would
suggest. Similarly, the changes in other demand side factors captured by x and the changes
in the factors in the charging station equation z will both shift G(qt–1) in figure 3 up or
down and hence affect the steady state solution of EV sales.

2.2. Implications on Policy Choices

Now we conduct simulations to understand how feedback loops magnify policy shocks
and their implications on policy choices. We fix pt, xt, and zt in equations (1) and (2)
15. Alternatively, the steady state can be equivalently expressed in terms of (Q*, N*). Our
specification rules out (0, 0) as another steady state solution. Having multiple equilibria is often
a signature property of two-sided markets with indirect network effects due to self-confirming
expectations (e.g., Gandal et al. 2000). From an empirical perspective, our specification is with-
out loss of generality since the empirical studies in this literature often assume that the nonzero
stable solution plays out in the data.
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and assume certain values for model parameters as reported in table 2. We then solve
for qt, Qt, and Nt sequentially for each period. Because of the positive feedback loops
(by assuming both β1 and γ1 being positive), EV sales and the number of charging sta-
tions will keep growing naturally until they reach the steady state where the inflow of
new vehicles equals the outflow of vehicles due to scrappage. To examine how positive
feedback loops could amplify a policy shock, we simulate a scenario where all EV buy-
ers are provided with a $7,500 subsidy for the first five periods and no more subsidy is
offered afterward.

As shown in panel A in figure 4, due to both the price effect (captured by β2) and
the indirect network effects (captured by β1 and γ1), the subsidy increases EV sales
substantially compared with the no-policy case during the first five periods. When
the subsidy terminates, EV sales continue to increase through feedback loops but with
a smaller magnitude. The sales increase due to subsidy gets smaller as feedback loops
diminish and the two growth paths eventually overlap. In both cases, the path of EV
sales converges to the same steady state but the policy shock makes the system con-
verge to the steady state more quickly: indirect network effects expedite this process
through positive feedback loops.
Figure 3. Steady state solution and stability. The expression qt is the number of new EV
sales in each period; qt 5 G(qt – 1) is the implicit function defined in equation (3); q * is the
steady state solution.
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Figure 4, panel B, depicts a similar pattern in the dynamic path of charging station
deployment. With the positive policy shock on the EV purchase side, the stock of charg-
ing stations increases quickly for the first five periods and continues to grow at a de-
creasing rate after the policy. It eventually converges to the same steady state as in the
no-policy scenario. These two graphs demonstrate that feedback loops from indirect
network effects magnify a shock to any side of the system and alter the convergence pro-
cess on both sides.

The existence of indirect network effects on both sides of the market could have
important policy implications. To foster the development of the EV market, policy
makers can choose to subsidize consumers for EV purchase directly (policy 1) or to
subsidize charging station investment (policy 2). We conduct simulations to examine
the relative cost effectiveness of these two policy options. Policy 1 provides EV buyers
with a subsidy of $7,500 per EV in the first five periods. Policy 2 uses the same ac-
count of total funding as in policy 1 to build charging stations. We compare the cu-
mulative sales increase over time due to these two policies (with a 5% annual discount
rate).16

To examine the implication of the relative strength of indirect network effects on
policy choices, we vary the ratio of β1/γ1 by holding β1 constant while changing γ1.
Figure 5 depicts, for any given price sensitivity β2 (say –1.5), as β1/γ1 increases
(i.e., indirect network effects in EV demand become relatively stronger), the second
policy (subsidy on charging stations) becomes more and more effective measured by
the increase in cumulative sales over time. The two policies are equivalent when β1/γ1
is 1 given the price elasticity of –1.5.
16. For policy 1, we
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Figure 4. Impacts of income tax credits (five periods) under feedback loops. A, EV sales in-
rease due to feedback loops. B, Charging stations increase due to feedback loops. EV sales and
harging stations without subsidy are solutions given by the system defined in section 3. The sim-
lated subsidy effects are due to a policy design that gives EV buyers a tax credit of $7,500 for
he first five periods. The parameters for simulations are reported in table 2, and the intuitive find-
ings remain with different assumptions of the simulation parameters.
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In addition to the relative strength of indirect network effects on both sides, the
policy comparison also depends on the price elasticity of EV demand. When consum-
ers are more sensitive to prices (e.g., going from –1.5 to –1.6), the policy of subsidizing
charging stations becomes relatively less effective for a given β1/γ1. This finding is il-
lustrated by the outward shift of the curve when the price elasticity changes to –1.4
and –1.6. The result is intuitive: if consumers are less price sensitive, it would take a
larger subsidy on EV purchases in order to push consumers to buy EVs, hindering the
effectiveness of the policy.

To summarize, the policy of subsidizing charging stations becomes more effective
relative to the policy of subsiding EV purchases when indirect network effects on EV
demand become stronger (holding network effects on the charging station side con-
Figure 5. Policy comparison and relative strength of indirect network effects. This figure de-
picts the relationship between the relative policy effects of two subsidy designs and the relative
strength of the indirect network effects on both sides of the EV market. Policy 1 subsidizes the
EV purchase by tax credits and policy 2 uses the same amount of funding to subsidize charging
stations. Given a price elasticity of EVs, policy 2 becomes more and more effective than policy 1
when the effect of charging stations on EV demand (denoted by β1) becomes larger relative to
the effect of EV stock on charging stations (denoted by γ1). When the magnitude of the price
elasticity increases (decreases) and consumers are more (less) sensitive to prices, policy 2 becomes
less (more) effective relative to policy 1 for a given ratio of β1/γ1.
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stant) or when consumers are less sensitive to price. These findings offer a theoretical
foundation for the policy comparison after our empirical analysis.

3. EMPIRICAL FRAMEWORK

To investigate indirect network effects on both sides of the market, we estimate: (1) an
EV demand equation that examines the effect of charging stations on EV sales and
(2) a charging station equation that estimates the effect of athe EV fleet on charging
station deployment. These equations build upon equations (1) and (2) in the theoret-
ical model above.

3.1. EV Demand

To describe the empirical demand model of EVs, let k index an EV model such as
Nissan Leaf and Chevrolet Volt, m index a market (MSA), and t index a year-quarter.
We estimate the following equation:

ln(qkmt) 5 β0 1 β1 ln(Nmt) 1 β02Xkmt 1 Tt 1 dkm 1 εkmt, (4)

where qkmt is the sales of EV model k in market m and year-quarter t.17 The termNmt

denotes the total number of public charging stations that have been built in the MSA
by the end of a given quarter.18 We use the number of charging stations instead of the
total number of charging outlets to represent the availability of charging infrastructure,
but the qualitative findings remain if we use the number of charging units. The expres-
sion ln(Nmt) captures the effect of charging stations on electric vehicle purchases and
the log form allows the effect to be diminishing. The term Xkmt is a vector of related
covariates including the effective purchase price, personal income, and other control
variables. The effective purchase price of a model is defined as the manufacturer’s sug-
gested retail price (MSRP) less the related subsidies (tax credits and tax rebates at
both federal and state levels).

We also include a full set of year-quarter (e.g., the first quarter of 2011) fixed ef-
fects and MSAmodel (e.g., Nissan Leaf in San Francisco) fixed effects in equation (4).
Year-quarter fixed effects Tt control for national demand shock for EVs common
across MSAs such as consumer awareness. MSA-model fixed effects δkm not only con-
trol for time-invariant product attributes such as quality and brand loyalty that could
17. This empirical specification is taken to be consistent with our theoretical model and to
ease results interpretation. The logit model from Berry (1994) implies that the dependent var-
iable would be ln(skit)– ln(s0mt) where skmt is the market share of model k in marketm and time t
and s0mt is the share of consumers who are not purchasing an EV. These two specifications pro-
vide almost identical parameter and elasticity estimates (see table 6).

18. In the estimation, we add one to qkmt, Nmt to deal with zero values for some of the ob-
servations. Our results are robust to excluding observations with zero values on qkmt or Nmt and
using ln(qkmt) and ln(Nmt).
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affect vehicle demand but also control for time-invariant local preference for green
products (Kahn 2007; Kahn and Vaughn 2009) and demand shocks for each model
(e.g., a stronger preference or dealer presence for Nissan Leaf in San Francisco). The
term εkmt is the unobserved demand shocks that are time varying and market specific
(for example, unobserved local government subsidy for purchasing EVs or market-
specific promotions for a vehicle model that vary over time).

It is well documented in the vehicle demand literature that failing to control for
unobserved product attributes could lead to downward bias in the price coefficient es-
timates (for example, Berry, Levinsohn, and Pakes 1995; Beresteanu and Li 2011).
MSA-model fixed effects absorbs both observed and unobserved vehicle attributes
variations that are time invariant, and what is left is the variation of vehicle attributes
over time. Since most of the EV models in our sample appear for only one year and
there is little variation of the observed attributes for the models that appear for more
than one year, we believe that using MSA-model fixed effects could control for unob-
served product attributes and alleviate the need to use the methodology developed in
Berry et al. (1995) to deal with price endogeneity where they only have national-level
sales data (i.e., one market).19 The price coefficient is identified from the fact that ef-
fective EV prices vary across markets and over time due to state-level subsidies and
temporal price variations.

Although we include a rich set of control variables, the charging station variable is
still endogenous due to simultaneity: the unobserved time-varying and market-specific
demand shocks could affect charging station investment decisions and hence the stock
of charging stations. To deal with the endogeneity, we use the IV strategy, and a valid
IV needs to be correlated with the number of charging stations in an MSA (the en-
dogenous variable) but not correlated with the unobserved shocks to EV demand.
The IV we employ is the interaction term between the number of grocery stores
and supermarkets in an MSA in 2012 with the number of charging stations in all
MSAs other than the MSA corresponding to a given observation (lagged for one quar-
ter). Grocery stores and supermarkets are a major owner of charging stations, and they
build charging stations to attract customers and boost green credentials, among other
reasons. These places could be good sites for public charging stations because EV driv-
ers can charge their vehicles while shopping. Nissan has been actively partnering with
grocery store owners to build charging stations. Kroger, the country’s largest grocery
store owner, has installed about 300 charging stations in their stores across the coun-
19. The methodology in Berry et al. (1995) uses a contracting mapping technique to first
back out product-level fixed effects (mean utility) in the first stage and then uses IV strategy
to estimate the remaining preference parameters based on the assumption that observed product
attributes are not correlated with observed product attributes, which could be a strong assump-
tion (Klier and Linn 2012). As a robustness check, we also include electric range and electric
mpg in one of the alternative specifications and the results are qualitatively the same.

This content downloaded from 050.100.116.095 on February 06, 2019 12:16:44 PM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



The Market for Electric Vehicles Li et al. 109
try. Our data show that the number of grocery stores in an MSA is positively corre-
lated with the number of charging stations.

However, the number of grocery stores does not vary with time in our sample pe-
riod, and it is therefore absorbed by the MSA fixed effects. To introduce temporal
variation, we multiply it with the lagged number of existing charging stations in all
MSAs other than the MSA corresponding to a given observation, which captures
the national-level trend in charging station investment due to aggregate shocks such
as temporal variations in costs, investor confidence, and federal incentive programs.
The construction of this IV is similar in spirit to the Bartik instrument used in the
labor literature to isolate local labor demand changes (Bartik 1991). The intuition
for the IV is that national shocks to charging station investment (captured by the
lagged number of charging station in all MSAs other than own) have disproportional
effects on charging station investment across MSAs: MSAs with a larger number of
grocery stores and supermarkets (hence better endowment of good sites for charging
stations) will be affected by these national shocks more than others, leading to varia-
tions in charging stations across MSAs. Our first-stage results in table 4 show that the
interaction term has a positive and highly statistically significant impact on charging
station investments.

We argue that this instrument should satisfy the exogeneity assumption. The
number of grocery stores and supermarkets is unlikely to affect EV sales directly.
There might be common unobservables that influence both the EV sales and the num-
ber of grocery stores, especially at the cross-sectional level. However, our model con-
trols for MSA fixed effects and should capture these time-invariant unobservables. At
the temporal dimension, EV sales vary from year to year but the number of grocery
stores is very stable given the maturity of the industry. In fact, the number of grocery
stores is measured at the end of 2012. The temporal variation in the IV comes from
the total (lagged) number of charging stations in all MSAs other than the own city.
Time fixed effect would control for time-varying common shocks across MSAs. Ex-
cluding the home city’s charging stations also removes the concern that one MSA’s
installation of a large number of charging stations could overly influence the estimation
results.

Our IV strategy leverages the interaction term between a national-level variable
with only temporal variation and an MSA-level variable with only spatial variation.
The rationale behind the IV is that different MSAs have different preexisting condi-
tions/ability to absorb national shocks to charging station investment such as changes
in macro-economic conditions and costs. One might be concerned that different
MSAs may have a different susceptibility to unobservable demand shocks at the na-
tional level and the number of grocery stores could be correlated with this susceptibil-
ity for some reason. To address this concern, we include a variety of MSA-level con-
trols interacting with the time trend. We use the sales of hybrid vehicles in 2007
(several years before EVs entered the market) to proxy for preference heterogeneity
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for greener vehicles or environmental friendliness. We also include personal income,
the share of college graduates among residents, the share of commuters driving to
work, the share of commuters using public transport to work, and the share of white
residents. We use the interactions of these variables with the time trend to control for
potential heterogeneity in the diffusion path of EVs across MSAs. Our results are ro-
bust to the inclusion of these controls, providing further support that our IV is a valid
exclusion restriction.

In some of the robustness checks, we use local policy variables such as subsidies on
charging stations as additional IVs and obtain similar results. We do not use them in
our benchmark specifications due to the concern that local policies whether subsidiz-
ing charging stations or EV purchases could be a response to local unobserved demand
shocks and hence be endogenous.

3.2. Charging Station Deployment

We derive the empirical model of charging station investment from an entry model
presented in the appendix where the profit depends on both the installed base of
EVs and the total number of charging stations in a market. Under certain functional
form assumptions, the total number of charging stations in a free-entry equilibrium is
given by the following equation:

ln(Nmt) 5 g0 1 g1 ln(Q
EV
mt ) 1 g02Zmt 1 Tt 1 Jm 1 ςmt, (5)

whereNmt denotes the stock of public charging stations that have been built in market
m by time t and QEV

mt denotes the installed base of EVs by time t. The vector of co-
variates Zmt includes the state-level tax credit given to charging station investors mea-
sured as the percentage of the building cost, a dummy variable indicating whether
there exist public grants or funding to build charging infrastructure, the interaction
term of number of grocery stores in a MSA in 2012 with the lagged number of charg-
ing stations in all MSAs other than own (the instrument in the EV demand equation),
and other control variables.

We also include a full set of time andMSA fixed effects. The termTt denotes year-
quarter fixed effects to control for time-varying common shocks to charging station
investment across MSAs such as macro-economic conditions. Market fixed effects
φm control for time-invariant and MSA-specific preferences for charging stations.
For example, some MSAs may be “greener” than others and invest more on alternative
fuel infrastructure. Similarly, MSAs with a higher population density and a limited
private installment of charging stations may have more public charging stations. The term
ζmt is the unobserved shock to charging station investment, for instance, the unobserved
local policies to support the charging station building. In the estimation, we add one to
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Nmt and Q
EV
mt to deal with zero values for some of the observations. We obtain similar

results by dropping these observations and use ln(Nmt) and ln(QEV
mt ) instead.

The issue of endogeneity due to simultaneity also arises in this equation. Both Nmt

and QEV
mt are stock variables, but the inflows to each variable are determined at the

same time. As a result, time-varying and MSA-specific shocks to investment decisions
(the error term in the equation) could be correlated with current EV sales, which are
part of the installed base. The instrument variables emerge more naturally in this
equation. In particular, we instrument for the installed base of EVs with a set of cur-
rent and past gasoline price variables. The fuel cost savings from driving EVs depend
on the price difference between gasoline and electricity, which varies across locations.
In MSAs with higher gasoline prices, consumers may have a stronger incentive to pur-
chase EVs.20 Because the installed base of EVs is the cumulative sales of EVs, we
include gasoline prices not only in the current quarter but annual gasoline prices in
the past three years as instruments. For example, for the installed base of EVs in the sec-
ond quarter in 2013, we use the gasoline price in the second quarter in 2013, the aver-
age gasoline price in 2012, the average gasoline price in 2011, and the average gasoline
price in 2010 as instrumental variables.

These gasoline price variables (including current and past gasoline prices) should
affect the installed base, which is confirmed in the first-stage regression in table 8.
But they are unlikely to affect investment decisions directly (i.e., other than through
the installed base). Since we include both time and MSA fixed effect, the remaining
variation in gasoline prices is largely driven by how time-varying crude oil prices inter-
act with market conditions that are likely time-invariant during our data period (e.g.,
market structure in wholesale and retail gasoline markets and distance to refineries).
These interactions lead to time-varying and MSA-specific differences in gasoline prices,
which are unlikely to be correlated with charging station investment directly. The de-
cision of charging station investment hinges on, among other things, the EV market
potential (proxied by the installed base of EVs) and the fixed costs of investment.
Fixed costs of charging station investment include the cost of equipment (chargers)
and labor cost, neither of which is likely to be correlated with gasoline price variations
(after controlling for MSA and time fixed effects). The operating costs of the charger
largely depend on electricity prices. There is no direct link between electricity and gas-
oline prices (after controlling for common shocks such as national economic conditions
using time fixed effects).
20. A report on the ownership cost of EVs by Electric Power Research Institute (2013)
finds that increases and decreases in gasoline prices will have a significant impact on the relative
costs of EVs.
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4. ESTIMATION RESULTS

We first present parameter estimates for equations (4) and (5). We then discuss the
indirect network effects implied by these parameter estimates.

4.1. Regression Results for EV Demand

Columns a–e in table 3 report the ordinary least squares (OLS) estimation results for
five different specifications where we add more control variables successively (first-
stage results reported in table 4). Column a includes only six explanatory variables.
Column b adds in year-quarter fixed effects to control for time-varying common un-
observables across MSAs. Column c further adds vehicle model fixed effects to control
for unobserved product attributes such as quality and brand loyalty that affect con-
sumer demand. Column d includes rich MSA-model fixed effects to control for both
unobserved product attributes and MSA-specific demand shocks for different EV
models. Column e adds two additional variables to control for potential heterogeneity
in the diffusion pattern across MSAs. The first variable is the interaction term be-
tween the sales of hybrid vehicles in 2007 (to proxy for preference for green vehicles)
and the time trend, and the second variable is the interaction between average personal
income and the time trend. Column f implements a GMM estimation strategy and
uses the interaction term of number of grocery stores and supermarkets in an MSA
in 2012 with the lagged number of charging stations in all the other MSAs as the in-
strument for the number of charging stations.

Given the log-log specification, the coefficient estimates can be interpreted as elas-
ticities. All the specifications provide intuitive and statistically significant coefficients
on the key variables of interests: EV demand increases with a larger network of charg-
ing stations, a lower vehicle price, and more home charging stations funded by the EV
project supported by the DOE, and higher income. The coefficient on the charging
station variable captures indirect network effects from charging station investment
on EV demand. The GMM results show that a 10% increase in charging stations
would result in an 8.4% increase in EV sales, which is higher than all the OLS esti-
mates (ranging from 1.8% to 5%). This suggests that the number of charging stations
is negatively correlated with the unobserved shocks to EV demand, leading to down-
ward bias in OLS. One example of unobserved shocks is local EV incentives that local
governments provide to compensate for the lack of public charging stations. Another
example is the home charging incentives from local electric utilities. Many local util-
ities offer a rebate for installing a home charging station and a discounted rate for
home EV charging as part of the demand side management program. Local govern-
ments often partner with local utilities to provide more generous home charging incen-
tives when there is a lack of private investment in public charging stations.

The price coefficients change from –0.470 to –0.817 from columns b–c after ve-
hicle model fixed effects are included. This is consistent with our discussion above:
vehicle model fixed effects control for unobserved product attributes which could
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be positively correlated with prices. Ignoring unobserved product attributes will bias
the price coefficient toward zero. Going from columns c–d where MSA-model fixed
effects are included, the EV demand function changes from being inelastic with a price
elasticity of –0.817 to being elastic with a price elasticity of –1.378. MSA-model fixed
effects control for MSA-specific time-invariant demand shocks (such as environmental
preference), and these demand shocks could affect state-level tax incentives. For exam-
ple, higher incentives are used to counter negative demand shocks. Hence MSA fixed
effects could control for the potential endogeneity in state-level tax incentives. The
GMM results provide a price elasticity of –1.288. Although this is at the lower
end of the price elasticity estimates in the literature on automobiles, we believe that
the magnitude is reasonable compared with the literature for two reasons.21 First,
21. Berr
els in 1990

All use subj
Table 4. First-Stage Results for EV Demand Equation

Variable

ln(no. of grocery stores) × ln(lagged national stations) .139***
(.023)

ln(retail price-tax incentives) –.193***
(.054)

ln(gasoline price) × PHEV .146
(.125)

ln(gasoline price) × BEV .064
(.135)

ln(residential charging from EV project) –.011
(.010)

ln(personal income) –.980
(1.035)

ln(hybrid vehicle sales in 2007) × time trend .010***
(.003)

ln(personal income) × time trend .018
(.022)

R2 .677
y et al. (1995) estimate the price elasticities ranging from –3 t
with more expensive models having the smaller price elasticitie

This content downloaded from 050.100.116.095 on February 0
ect to University of Chicago Press Terms and Conditions (http://w
Note. The dependent variable is ln(no. of stations). The number of observa-
tions is 14,563. Standard errors (in parentheses) are clustered at the MSA level.
The model includes year-quarter fixed effects and MSA-model (e.g., Nissan Leaf
in San Francisco) fixed effects.

* p < .10.
** p < .05.
*** p < .01.
o –7 for vehicle mod-
s (in magnitude). The

6, 2019 12:16:44 PM
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The Market for Electric Vehicles Li et al. 115
EV buyers are more affluent and hence less price sensitive compared with average ve-
hicle buyers. Second and perhaps more importantly, EV buyers can be characterized
as early adopters, and one can argue that many of them choose EVs out of their strong
environmental concerns and/or making a statement by driving an EV as has been doc-
umented in the case of hybrid vehicles (e.g., Kahn 2007; Sexton and Sexton 2014).22

Lower fuel cost is one of the major benefits of EVs, and higher gasoline prices will
have a positive impact on EV adoption by increasing future fuel cost savings from driv-
ing EVs in place of conventional vehicles. To capture the heterogeneous impact of gas-
oline price on the demand of the two types of EVs, two interaction terms of quarterly
gasoline prices with BEV and PHEV dummy variables are included. The results from
all the specifications find a positive and statistically significant effect of gasoline price
on BEV purchase. While the interaction term with PHEV is positive and significant
in columns a–c of table 3, columns d–f do not find a significant impact of gasoline price
on PHEV demand when MSA-model fixed effects are included. Intuitively, BEV
drivers could be more sensitive to gasoline prices than PHEV buyers given that BEVs
run exclusively on electricity while PHEVs run mostly on gasoline for long-distance
driving given its short range of battery charge. That is, PHEV drivers do not make a
long-term commitment to an alternative fuel to the extent that BEV drivers do. In
addition to gasoline prices, we included electricity prices in previous analysis and
the coefficient estimate was small in magnitude and statistically insignificant in all
specifications. This could be because (1) the operating cost from using electricity is
a small portion of vehicle lifetime cost for EVs and (2) there is not muchMSA-specific
temporal variation in electricity prices. The coefficient on the interaction term be-
tween hybrid sales in 2007 and time trend is positive and statistically significant, im-
plying that MSAs that had more sales of hybrid vehicles in 2007 (proxy for preference
for greener products) have a faster diffusion of EVs.

The results from these regressions imply that the increased availability of public
charging stations has a statistically and economically significant impact on EV adop-
tion decisions. Our estimation results confirm that even if most EV drivers can charge
vehicles at home, better access to public charging facilities elsewhere is still an impor-
tant demand factor by, for example, alleviating range anxiety.23 Based on the param-
eter estimates on charging station and price variables, a back-of-the-envelope calcula-
22. The California Plug-in Electric Vehicle Owner Survey (2014) shows that EV buyers
have higher household income than buyers of gasoline vehicles and that the environmental con-
cern is an important motivator for EV purchase: 38% of Nissan Leaf buyers and 18% Chevy
Volt buyers consider the environmental concern to be the top motivator.

23. According to the EV Project report (Idaho National Laboratory 2013), the percentage of
EV home charging for 22 program areas is about 79% forNissan Leaf and 84% for Chevrolet Volt.

lower end of price elasticities for vehicle models in 2006 in Beresteanu and Li (2011) is also
around –3.
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tion shows that the demand effect from having one more charging station from the
sample average of 22.6 is equivalent to that from a reduction of EV price by $961
(the average price is $33,127). When the number of charging stations increases to
27.3 (the sample average in 2013), the equivalent price reduction is $795. At the sam-
ple maximum of 320 charging stations, one more charging station is only equivalent to
$68 price reduction, showing the diminishing effect implied by the log-log functional
form.

4.2. Alternative Specifications for EV Demand

We take the estimates in column f in table 3 as our baseline specification. To check the
robustness of the results, we estimate a variety of different specifications, and the re-
sults are reported in table 5. Column a includes the interaction term between the
number of charging stations and average commute time to work in the MSA to cap-
ture the heterogeneous impact of charging stations across cities with different com-
muting patterns.24 The positive coefficient estimate on the interaction term suggests
that the availability of charging stations has a larger impact on EV demand in the
MSAs with a longer commute. This is intuitive since in MSAs where people have
a longer commute, range anxiety would be more of an issue. Across MSAs, the elas-
ticity of charging stations with respect to the EV sales ranges from 0.27 to 1.05 de-
pending on the average commute time.

Column b adds the quadratic terms of the time trend variables to our baseline spec-
ification to allow more flexible time effect. The coefficient estimates on the key param-
eters are almost intact. Column c includes the interaction term of charging stations
with a BEV dummy to capture the different impact of charging stations on BEVs
and PHEVs. The coefficient estimate on the interaction term is positive while not sta-
tistically significant. Column d includes two more instruments: the tax credits and the
availability of public funding for building charging stations, both of which appear in
the charging station equation. We did not include them in our baseline specification
because the exogeneity assumption may not hold for the subsidies as they could be a
response to unobserved EV demand shocks. Column e removes the price variable in
the regression to deal with the concern that the price variable, especially state-level in-
centives, could be endogenous. Column f adds the interaction terms between various
demographic variables and the time trend to further control for MSA-level heteroge-
neity in the diffusion pattern. Across these specifications, the estimated effects of
charging station availability on EV demand as well as other parameter estimates are
similar to those from the baseline specification in table 3. Column g reports the de-
24. The average commute time to work at the MSA level is calculated based on combined
2006–11 samples of the American Community Survey. The average commute time is 22.96 min-
utes with a standard deviation of 3.37, a minimum of 14.59 and maximum of 35.01.
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The Market for Electric Vehicles Li et al. 117
mand estimation using the logit model as in Berry (1994), and it produces almost iden-
tical elasticity estimates as our baseline specification.

Some states, such as California and Oregon, have adopted a Zero Emission Vehi-
cle (ZEV) program, which requires a certain part of automakers’ sales to be clean fuel
vehicles, and some automakers have introduced EV models in those regions only to
comply with the regulations. To control for more intense competition in those mar-
kets due to more EV models introduced, column h in table 6 includes ZEV-specific
time fixed effects, and the results are similar to previous results with a modest increase
in the coefficient estimate on charging stations. Column i uses only BEV sales, and
the estimates are not systematically different from the estimates using the full sam-
ple with BEVs and PHEVs. Columns j and k increase the lag of the total number
of charging stations in all other MSAs to two and three-quarters when construct-
ing the instrumental variable and there is no substantial change of the estimates ex-
cept that the coefficient of the charging stations decreased slightly, primarily due to
loss of observations. However, increasing the lag to more than three-quarters leads
to weak IV.

As shown in column g in table 6, our demand specifications would yield nearly
identical results as the Berry logit model. With only EV models in our data, our anal-
ysis treats all other non-EV models to be in one category (i.e., the outside good). Lim-
iting the choice set and the substitution pattern across choices could potentially af-
fect our estimate of the price elasticity and our policy simulations. EV models represent
a different technology that is dramatically different from conventional gasoline vehi-
cles; therefore, consumers are likely to consider them as a separate category in making
purchase decisions, especially given that the EV buyers in our data period are often
motivated by strong environmental concerns according to the California Plug-in Elec-
tric Vehicle Owner Survey (2014). Nevertheless, some PHEVs do have conventional
hybrid counterparts. For example, the Toyota Prius plug in has a hybrid version,
Toyota Prius. Considering most of PHEVs have limited electric range (11–38 miles),
some consumers may compare PHEVs with hybrid vehicles. Recognizing this, col-
umn i in table 6 only include BEV models in the regression. The results are very simi-
lar to those obtained using the full sample, suggesting that the limitation in our choice
set and modeling framework may not have a large impact on the key parameters of
interest.25
25. EV models only represent less than 0.8% of new vehicle sales in the nation in 2013. In-
cluding models of other fuel types would not help us identify the indirect network effects since
their demand does not depend on EV charging stations. We believe that micro-level data with
the second-choice information is much better suited to assess the substitution pattern between
EVs and different types of non-EVs than the aggregate data that we currently have. This is an
ongoing work of the authors.
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4.3. Regression Results for Charging Station Deployment

Columns a–d in table 7 report the OLS regression results for the charging station
equation(5) (first-stage results reported in table 8). In column a, only the four explan-
atory variables of interest are included. Column b includes year-quarter fixed effects to
control for time trends that are common to all MSAs such as federal subsidies for
building charging stations that occur during a specific period of time. Column c further
includes MSA fixed effects to control for time-invariant MSA-level baseline differences
Table 6. Additional Specifications for Vehicle Demand, B

Variable
GMM
( g)

GMM
(h)

GMM
(i)

GMM
( j)

GMM
(k)

ln(no. of charging stations) .842*** .953*** 1.005*** .725*** .683***
(.162) (.170) (.281) (.224) (.347)

ln(gasoline price) × PHEV –.083 .099 .127 .176
(.206) (.211) (.204) (.201)

ln(gasoline price) × BEV .420* .590** .024 .238 .223
(.220) (.231) (.283) (.218) (.220)

ln(retail price – tax
incentives) –1.288*** –1.283*** –.927*** –1.297*** –1.307***

(.131) (.131) (.268) (.135) (.139)
ln(residential charging from

EV project) .050*** .049*** .027 .054*** .055***
(.009) (.011) (.020) (.012) (.011)

ln(personal income) 2.058** 2.184** .045 1.764** 2.900***
(.854) (.933) (1.362) (.831) (.835)

ln(hybrid vehicle sales
in 2007) × time trend .011** .006 .013 .014** .015*

(.005) (.005) (.008) (.006) (.008)
ln(personal income) ×

time trend .001 –.001 .014 .008 .007
(.020) (.020) (.032) (.020) (.020)

Observations 14,563 14,563 6,720 14,328 13,990
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The Market for Electric Vehicles Li et al. 121
in charging station investment. Column d adds in the interaction term between the
hybrid vehicle sales in 2007 (proxy for environmental friendliness) and time trend
to control for heterogeneity in the diffusion pattern of charging stations.

All OLS regressions find a positive and statistically significant coefficient for the
installed EV base. The estimate results in column d suggest that a 10% increase in
the EV fleet size would lead to a 1.2% increase in the number of public charging sta-
tions. The GMM results in column e show that a 10% increase in EV fleet size would
result in a 6.1% increase in charging stations. In column f, we add the EV incentives
Table 7. Charging Station Equation

Variable
OLS
(a)

OLS
(b)

OLS
(c)

OLS
(d)

GMM
(e)

GMM
( f )

ln(EV installed base) .374*** .540*** .136*** .115*** .613*** .659***
(.025) (.028) (.029) (.028) (.157) (.157)

Charging station
tax credit (%) –.005*** –.003* .003 .003 .012 .012

(.002) (.002) (.013) (.014) (.014) (.014)
Public funding or grants .099* .077 .007 –.020 .078 .088

(.060) (.057) (.048) (.047) (.054) (.055)
ln(no. of grocery stores) ×

ln(lagged national stations) .042*** .030*** .183*** .118*** .063** .058**
(.005) (.005) (.017) (.020) (.025) (.025)

ln(hybrid vehicle sales
in 2007) × time trend .018*** .009** .009*

(.003) (.004) (.005)
Year-quarter fixed effects No Yes Yes Yes Yes Yes
MSA fixed effects No No Yes Yes Yes Yes
Overidentification

test (p-value) .3435 .1347
Underidentification

test (p-value) .0000 .0001
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(tax credits and rebates at the federal and state levels) as an additional instrument and
the coefficient for charging stations increases from 0.613 to 0.659. We take column e
as our baseline IV specification due to the concern that the EV incentives (especially
those at the state level) could be endogenous as they could be a response to the un-
observed shocks to the deployment of charging stations.

The GMM coefficient estimates are higher than all the OLS estimates, suggesting
that the installed base of EVs is negatively related to the unobserved shocks to charg-
ing station investment, leading to downward bias in OLS. An example of the unob-
served shocks is the unobserved local policies: policy makers may design policies to
support charging station investment to counteract negative EV demand shocks.

The results in column e show that tax credits and the availability of public funding
for charging stations have positive but statistically insignificant coefficients. The tax
credits and public funding are both at the state level. The dependent variable in the
charging station equation, however, only includes publicly accessible charging stations,
which are mainly subsidized by the federal government directly through federal proj-
All use subj
Table 8. First-Stage Results for Charging Station Equation

Variable

ln(current gasoline price) .206
(.233)

ln(gasoline price last year) 3.304***
(.824)

ln(gasoline price two years ago) 3.236***
(.676)

ln(gasoline price three years ago) 3.087***
(.810)

ln(hybrid vehicle sales in 2007) × time trend .021***
(.004)

ln(no. of grocery stores) × ln(national charging stations) .085***
(.023)

Charging station tax credit (%) –.017
(.018)

Public funding or grants for stations –.228***
(.061)

R2 .922
This content downloaded from 050.100.116.095 on February 06
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Note. The number of observations is 4,236. The dependent variable is ln(EV
stock). The model includes year-quarter fixed effects and MSA fixed effects. Stan-
dard errors (in parentheses) are clustered at the MSA level.
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** p < .05.
*** p < .01.
, 2019 12:16:44 PM
ww.journals.uchicago.edu/t-and-c).



The Market for Electric Vehicles Li et al. 123
ects such as the EV Project and ChargePoint Project. Although state-level tax credits
and funding also apply to public charging stations, they mostly support the installation
of charging stations at workplace and multifamily dwellings, which are usually privately
accessible and are excluded from our analysis. The interaction term of grocery stores
with the lagged number of stations in all MSAs other than own has a positive and sta-
tistically significant coefficient, consistent with our argument for using it as a relevant
instrument in the EV demand equation.

5. POLICY SIMULATIONS

Our empirical analysis suggests that indirect network effects exist on both sides of the
market. In this section, we first examine the policy impact of the current federal in-
come tax credit policy for EV buyers and then compare this policy with an alternative
policy that subsidizes charging station investment instead.

5.1. Impact of Income Tax Credits

The federal government has adopted several policies to support the EV industry, in-
cluding providing federal income tax credits for EV purchase, R&D support for bat-
tery development, and funding for expanding charging infrastructure. The CBO
(2012) estimates that the total budgetary cost for those policies will be about $7.5 bil-
lion through 2017. The tax credits for EV buyers account for about one-fourth of the
budgetary cost and are likely to have the greatest impact on vehicle sales. Under the
tax credits policy, EVs purchased in or after 2010 are eligible for a federal income tax
credit up to $7,500. Most popular EV models on the market are eligible for the full
amount.26 The credit will expire once 200,000 qualified EVs have been sold by each
manufacturer.

In order to examine the effectiveness of the income tax credit policy in terms of
stimulating EV sales, we use our parameters estimates from the two baseline GMM re-
gressions to stimulate the counterfactual sales of EVs that would arise in the absence
of the $924.2 million worth of tax credits to EV buyers from 2011 to 2013. The im-
pact of the policy depends not only on the price elasticity of EV demand in the EV
demand equation but also on the magnitude of indirect network effects captured in
both equations.

We assume in our simulations that the MSRPs will not be affected, implying that
consumers previously captured all the subsidies. We believe that this is a reasonable
assumption in the EV launch stage when automakers produce EVs likely at a loss
26. The only EV models that are not eligible for the full amount of credits are Honda Ac-
cord Plug-in, Ford C-Max Energi, Porsche Panamera, and Toyota Prius plug-in. And their el-
igible tax credits are $3,626, $4,007, $4,751.8, and $2,500, respectively. In our policy simula-
tion, we remove the tax credits based on different models.
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since the production level is far below the efficient production scale.27While more and
more states are providing subsidy programs to encourage the adoption of EVs, the re-
tail prices for electric vehicles have actually been decreasing (for the same model) dur-
ing our sample period likely due to decreasing production cost and the increasing com-
petition.

Our simulation results in table 9 show that EV sales would have been 56,690 less
(or 40.44% of the total sales) from 2011 to 2013 without the $924.2 million worth of
income tax credit to EV buyers. If we shut down feedback loops, the sales contribution
from the tax credit policy would only have been 33,949 (24.2% of the total sales). This
implies that feedback loops magnify the policy shock and explain 40% of the sales in-
crease from the policy. The results suggest that feedback loops have a multiplier effect
of 1.67. The CBO finds the policy impact to be 30% of the total EV sales while their
study only considers the price effect of the tax credit but not the role of indirect net-
work effects in amplifying the policy effect (CBO 2012). DeShazo et al. (2014) study
the California Clean Vehicle Rebate Projects for EVs and find a 7% increase in EV
sales from the rebate of $1,838 on average. Neither of these studies takes into account
indirect network effects, and their estimates likely provide the lower bounds of subsidy
impacts.

5.2. Policy Comparison

Our stylized model suggests that feedback loops from indirect network effects on both
sides of the market have important policy implications. A policy shock on one side of
the market would affect the other side. To promote EV adoption based on a variety of
rationales as discussed in section 1.2, policy makers face a problem of optimal policy
design in that the tax revenue can be used to subsidize one or both sides of the market.
We compare the subsidy policy on EV purchase with an alternative policy of subsi-
dizing charging station investment. The alternative policy uses the same budget of
$924.2 million evenly in each quarter during 2011–13 to install charging stations in
all MSAs (proportional to population). As a lower bound estimate of the investment
cost of charging stations, we assume the government is only responsible for the pur-
chase and installation of the charging hardware and the charging station company will
then operate and maintain the charging stations, as in the case of the EV Project and
ChargePoint Project, the two federal charging station support programs. As a robust-
ness check, we also estimate an upper bound investment cost for charging stations as-
suming the government will also need to maintain and operate those charging stations.
27. In a study by Sallee (2011) on the income tax credit on hybrid vehicles after hybrid ve-
hicles were first introduced to the market, he finds that consumers captured the majority of the
gains for the income tax subsidy. Automobile assembly lines generally operate most efficiently
with an output of 200,000–250,000 vehicles per platform (Rubenstein 2002). The global sales
of the most popular EV model, Nissan Leaf, was only 61,027 in 2014.
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The lower bound and the upper bound of the charging station investment cost are
$27,000 and $50,244, respectively.28

The policy comparison between these two policies is provided in table 10. We as-
sume the policy period runs from 2011 to 2013 (i.e., no subsidy available in either
policy after that). The existing tax credit policy (policy 1) has led to 56,690 more
EVs from 2011 to 2013, amounting to $16,303 for one additional EV. The policy
effect will continue to exist until the feedback loops die out in 2055.29 The impact
on EV sales from this policy in the long term would be 184,049, amounting to
Table 9. Policy Impacts of Federal Income Tax Credits for EVs

Time Observed EV Sales Counterfactual Sales Sales Reduction Percentage

2011–1 1,105 772 333 30.10%
2011–2 3,241 2,580 661 20.40%
2011–3 2,813 1,887 926 32.91%
2011–4 3,900 2,256 1,644 42.16%
2012–1 4,307 2,015 2,292 53.22%
2012–2 7,030 3,517 3,513 49.97%
2012–3 9,662 5,575 4,087 42.30%
2012–4 12,665 7,838 4,827 38.11%
2013–1 21,140 12,931 8,209 38.83%
2013–2 24,803 15,571 9,232 37.22%
2013–3 25,782 15,679 10,103 39.19%
2013–4 23,747 12,884 10,863 45.74%
Total 140,195 83,505 56,690 40.44%
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$5,022 per policy-induced EV purchase. If instead, the government had spent the
$924.2 million subsidizing charging stations by purchasing and installing charging in-
frastructure (policy 2 with lower station cost), EV sales would have increased by
124,904 during these 3 years. The cumulative impact on EV sales from this policy
until year 2055 would be 403,558, amounting to $2,290 per induced EV, only 46%
of the unit cost under the existing policy. If the government were also responsible
for maintaining and operating those stations (policy 2 with higher station cost), EV
sales would have increased by 75,199 during these three years and 267,741 in the long
term, amounting to $3,452 per induced EV, still preferable to policy 1.

As depicted in figure 6, policy 2, which subsidizes charging station investment, dem-
onstrates a dominant advantage in stimulating EV sales in the early stage of the EV mar-
ket. The $924.2 million spending during the 3 years can install about 18,395 to 34,231
All us
Table 10. Comparison of EV Income Tax Credit and Charging Station
Subsidy Policies

EV Sales Increase
from Policy 2

EV Sales Increase
from Policy 1 Low Cost High Cost

2011–1 333 2,532 1,439
2011–2 661 3,839 2,214
2011–3 926 4,116 2,422
2011–4 1,644 5,937 3,505
2012–1 2,292 6,500 3,891
2012–2 3,513 8,599 5,185
2012–3 4,087 9,074 5,482
2012–4 4,827 9,856 5,966
2013–1 8,209 17,832 10,762
2013–2 9,232 18,340 11,088
2013–3 10,103 18,880 11,443
2013–4 10,863 19,397 11,801
Sales increase in 3 years 56,690 124,904 75,199
Total increase long-term 184,049 403,558 267,741
Total increase in 10 years 168,131 373,748 245,687
Government spending per EV $5,022 $2,290 $3,452
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Note. Both policies use $924.2 million. Policy 1 provides a rebate in the form of tax cred-
its for EV buyers with the amount the same as the current income tax credit policy for each
EV model. Policy 2 uses the same budget to build charging stations evenly in each quarter in
all metro areas weighted by population. We assume investing a charging station has a lower-
bound cost of $27,000 and an upper-bound cost of $50,244. Total increase includes vehicle
sales increase during the policy effective period and the increase in future years (until 2055)
discounted to year 2011 by a 5% discount rate.
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charging stations depending on the actual investment cost. This is more than one-eighth
to one-fourth of the total number of gasoline stations in the country and almost one
and half to three times of the current total number of public charging stations in the
whole country. This large amount of public charging stations should dramatically alle-
viate or even eliminate range anxiety for potential EV buyers. Our results indicate that
building charging stations is a more effective way to boost EV sales in the EV launch
stage. As shown in our regression results, indirect network effects on the EV demand
side are much stronger than those on the charging station side (coefficient ratio being
1.4) and consumers are not very sensitive to prices (price elasticity being –1.3). As a re-
sult, the policy that builds charging stations stimulates EV sales at a much faster pace,
consistent with our findings in the model section.

The long-run simulations are based on a variety of assumptions and are meant to
be illustrative. As the technology improves, the EV driving range is likely to increase,
weakening indirect network effects from charging stations to EV demand. In addition,
in the longer term, as EVs become more of a serious choice for average vehicle buyers,
consumer price sensitivity among EV buyers could increase. Both of these changes would
affect the policy outcomes and weaken the effectiveness of policy 2 relative to policy 1.
Figure 6. Sales impacts from two subsidy policies. Each data point represents EV sales in-
crease by quarter due to the policy. Policy 1 gives new EV buyers a tax credit of $2,500–$7,500
based on different models as the current income tax credit policy for EVs. Policy 2 builds charg-
ing stations in all MSAs with the same total spending as policy 1 by assuming a charging station
investment cost with a lower bound cost of $27,000 and an upper bound of $50,244.
edu/t-and-c).
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As discussed in section 4.2, the network size of charging stations has heterogeneous
impacts on the EV demand across locations with different average commute time.
This implies heterogeneity in the relative strength of indirect network effects on
the two sides of the EV market and hence heterogeneity in policy comparison. That
is, policy 2 may not be always preferred as previous analysis suggests. In MSAs where
indirect network effects on EV demand are not strong since drivers have shorter com-
mutes and home charging is enough to ensure their daily trips, policy 1, which subsi-
dies EV purchase, could be more effective. Figure 7 depicts the relative effectiveness of
the two policies in promoting EV adoption. The MSA with policy 2 being most ef-
fective is New York–New Jersey–Long Island (NY-NJ-PA) where the average com-
mute time is longest, while the MSA with policy 1 being most effective is Grand Forks
(ND-MN) where the average commute time is shortest. This suggests that a more
elaborate and cost-effective policy design would be to subsidize charging stations in
areas with long commute (e.g., large MSAs) but to subsidize EV purchases in areas
with short commute (e.g., small MSAs). This type of regionally differentiated policy
could be implemented at the federal level but perhaps more feasibly at the state and
local levels. For example, in states or cities where the average commute is longer, state
and local governments should focus on building charging station infrastructure while
subsidies on EV adoption, for example, through rebate and HOV lane usage, can be
implemented in states and cities where the average commute is shorter.

6. CONCLUSION

This study first demonstrates through a stylized model that positive indirect network
effects in both EV demand and charging station deployment give rise to feedback
loops that amplify shocks to the system and have important policy implications. Al-
though indirect network effects on both sides of the market imply that subsidizing ei-
ther side of the market will result in an increase in both EV sales and charging stations,
the relative cost effectiveness of different subsidy policies depends on consumer price
sensitivity for EVs and the relative magnitude of indirect network effects on the two
sides of the market.

The paper provides to our knowledge the first empirical analysis of indirect net-
work effects in this market and evaluates the impacts of the current federal income
tax credit program for EV buyers. Our analysis estimates the elasticity of EV adoption
with respect to charging station availability to be 0.84 and the elasticity of charging
station investment with respect to the EV installed base to be 0.61. These indirect
network effects enhance the effectiveness of the tax credit policy, which has contrib-
uted to 40% of EV sales during 2011–13 and will continue to exhibit a positive effect
on the market for many years through feedback loops. Given the relative strength of
indirect network effects on the EV demand side and the low price sensitivity of early
adopters, subsidizing charging station deployment would be much more cost effective
than the current policy of subsidizing EV purchases.
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Our findings offer some insights for policy design to promote EV technology. First,
the policy to expand the charging station network (e.g., through subsidies) would be
especially effective in the EV launch stage due to the low price sensitivity of early
adopters and strong indirect network effects from charging stations on EV demand.
Second, our analysis demonstrates that significant spatial differences exist in optimal
policy design. Together with the finding from the literature that the environmental
benefits from EVs exhibit significant heterogeneity across locations with a different
fuel mix of electricity generation, the spatial variation in indirect network effects limits
one-size-fits-all policies and argues for regionally differentiated policies.
APPENDIX

ENTRY MODEL OF CHARGING STATIONS

The entry model is developed based on Gandal et al. (2000). Denote EV owners’ de-
mand for charging station j by D(p1, . . . , pN), where N is the number of charging sta-
tions available in a given market, and pj is the price at charging station j, j5 1, . . . , N.
We assume that demands are symmetric in terms of prices at different charging sta-
tions. Furthermore, we assume that the marginal cost is constant, denoted by c, and
that the profit function from each EV owner (pj – c)D(p1, ::: , pN) is quasi-concave in
pj. Under these assumptions, there exists an equilibrium in which all stations charge the
same price, which depends on N, denoted by p(N). Denote the equilibrium markup
by

J(N) ≡ –
D(p)
∂D(p)
∂p

h i
0
@

1
A

and assume φ′(N) < 0, which is consistent with most common competition models.
Let f (N) 5 J(N)D ðp(N))/N. Then the per period profit of a station in market m
at time t is pmt 5 QEV

mt f (Nmt).
Now consider a charging station’s entry decision. If a charging station enters mar-

ket m at time t, it pays the entry cost Fmt and earns the profit streams (pmt, p(mt11):::),
generating a discounted profit of –Fmt 1 pmt 1 dpmt11 1 :::, where δ is a discount
factor common to all stations. If a station enters market m at time t 1 1, it generates
a discounted profit of –dFmt11 1 dpmt11 1 d2pmt12:::. In a free-entry equilibrium
firms must be indifferent between these two options. This implies

Fmt – dFmt11 5 pmt 5 QEV
mt f (Nmt):

Taking the natural logarithms of both sides, we can get

ln(Fmt – dFmt11) 5 ln( f (Nmt)) 1 ln(QEV
mt ): (A1)
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We specify the entry cost as

ln(Fmt – dFmt11) 5 r0 1 r1Zmt 1 tmt, (A2)

where τmt is the unobserved entry cost, and the vector of covariates Zmt includes the
state-level tax credit given to charging station investors measured as the percentage
of the building cost, a dummy variable indicating whether there exists public grants
or funding to building charging infrastructure, the interaction term of number of gro-
cery stores in an MSA in 2012 with the lagged number of charging stations in all
MSAs other than own (the instrument in the EV demand equation), and other con-
trol variables.

We specify the profitability of charging station f(N) as follows

ln( f (Nmt)) 5 λ0 1 λ1 ln(Q
EV
mt ) 1 ϑmt, (A3)

where Nmt is installed base of charging stations by time t which captures the compe-
tition among charging stations, and ϑmt is an error term that captures the unobserved
local demand shocks.

Furthermore, we decompose the local shock as

(tmt – ϑmt)/λ1 5 Tt 1 Jm 1 ςmt, (A4)

where Tt is year-quarter dummies that control for time effects common to all the
MSAs, φm is market fixed effects that control for time-invariant and MSA-specific
preferences for charging stations, and ςmt is an term capturing those idiosyncratic local
demand shocks.

From equations (A1), (A2), (A3), and (A4), we can obtain the charging station
equation (5) in section 3.2:

ln(Nmt) 5 g0 1 g1 ln(Q
EV
mt ) 1 g2Zmt 1 Tt 1 Jm 1 ςmt,

where g0 5 (r0 – λ0)/λ1, g1 5 –1/λ1, g2 5 r1/λ1.
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