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Measuring the Capacity Impacts
of Demand Response

Critical peak pricing and peak time rebate programs offer
benefits by increasing system reliability, and therefore,
reducing capacity needs of the electric power system.
These benefits, however, decrease substantially as the size
of the programs grows relative to the system size. More
flexible schemes for deployment of demand response can
help address the decreasing returns to scale in capacity
value, but more flexible demand response has decreasing
returns to scale as well.

Robert Earle, Edward P. Kahn and Edo Macan

I. Introduction

Demand response is an

increasing part of the energy

policy agenda in the United

States. The Federal Energy

Regulatory Commission (FERC)

has undertaken major initiatives

to encourage the incorporation of

demand response in the

wholesale markets, the American

Recovery and Reinvestment Act

of 2009 (aka, ‘‘the stimulus bill’’)

has provisions supporting

demand response, and many

states have instituted demand

response initiatives or are

contemplating whether to do so.1

D emand response is a

reduction in demand

designed to reduce peak demand

or avoid system emergencies. In

this regard, demand response can

be a more cost-effective

alternative than adding peaking

generation in trying to meet

occasional demand spikes. The

top 1 percent of hours for many

electric power systems accounts

for over 10 percent of the demand
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(measured in MW of capacity), as

illustrated in Figure 1 for the

system we studied.2 In the year

studied, the peak load was

44,961 MW and the top 87 hours

accounted for 11 percent of the

demand. In order to satisfy

this demand, generation that

runs infrequently must be

available to meet that demand.

Demand response is meant to

reduce demand during those

top hours, and therefore, avoid

the capacity costs associated

with generating units that

only run a few hours out of the

year. In integrated resource

planning (IRP), demand response

is one method in portfolio of

resources to meet peak load and

reliability criteria. This article

examines the reliability

contribution of certain demand

response programs.

W hile demand response

comes in many flavors,

pricing programs that give

consumers price signals that vary

over time (to induce reduction

during times of peak demand) are

an increasing focus of utilities,

regulators, and policymakers.3 In

the case where the time periods

are not fixed ahead of time in the

tariff, as with time-of-use

programs, these programs are

often referred to as dynamic

pricing. Two typical programs

under this category are critical

peak pricing (CPP) and peak time

rebate (PTR). Under CPP, certain

hours (for example, noon to six)

are designated critical peak hours.

On the days that the utility

designates as a critical peak day

or event day, the consumer pays

more than the usual tariff during

critical peak hours. Which days

are critical peak days are not

known until the day before or the

same day as the critical peak day.

There is usually a limit on the

number of critical peak days

during the year and often they

are restricted to the summer

season. Figure 2 illustrates the

concept.

PTR shares a similar design to

that of CPP in that the utility

selects days when the program is

active during peak hours, but

instead of charging the customer

more for usage during peak

periods, customers are given a

rebate for less consumption

during times selected as critical

periods. Figure 3 shows how PTR

essentially looks like the inverse

of CPP during critical periods.4

U nder most designs of either

CPP or PTR, the critical

period is a fixed time of daywith a

maximum number of critical

periods per year. For example,

Pacific Gas & Electric and

Southern California Edison have

Figure 2: Critical Peak Pricing (CPP)

Figure 1: Load Duration Curve for CAISO (2002)
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explored CPP/PTR designs with

critical periods between noon and

6 PM that occur at most 12 times

per year. That is, though there

may be more than 12 times a year

when stress conditions arise, 12

days is the maximum for which

the customer might be exposed to

‘‘supranormal’’ prices. Because

the value of demand response is

largely due to avoided capacity

costs, in order to get the most

value out of CPP or PTR demand

response programs, it is essential

to carefully choose the periods to

activate the programs in which

capacity is needed the most. To

examine the capacity impacts of

these programs, we tested

program impacts against a variety

of scenarios with a reliability

impacts model using California

data from 2002.

T hough the year 2002 was

chosen as a test year

primarily because of the

availability of data, and while our

exact results are dependent on the

particular system and program

designs studied, the general

nature of the results is likely to

hold for systems that are

relatively more stressed than the

one we have examined. As a

result, we are able to draw some

general conclusions. First, at

relatively low levels of demand

response, CPP and PTR programs

can provide close to 100 percent of

the capacity value relative to the

amount of demand reduction. In

other words, at low levels of

demand response, these

programs provide almost a MW

of capacity value for a MW of

demand response. Second, as

demand response levels increase,

the capacity value of demand

response can decrease

significantly. Thus, the capacity

value of the studied demand

response programs is subject to

decreasing returns. Third, as the

amount of actual response

increases (rather than the enrolled

MW or number of participants),

flexibility in program design

becomes increasingly important.

However, there are important

tradeoffs between having the

simplicity of rate design that

results in transparent and

understandable rates, and

dynamic prices that meets its full

potential. Fourth, because there is

not yet full implementation of

these programs, little is currently

known about the variability of the

level of response. Demand

response that provides 1,000 MW

of reduction with certainty during

a critical period will likely have a

greater impact than demand

response that has an average

response of 1,000 MW but may be

more or less than that average.

The rest of this article is

organized as follows. Section II

discusses the model used to study

the capacity impacts of mass

market dynamic pricing, as well

as presents basic results

demonstrating the decreasing

returns to scale for CPP and PTR

programs. Section III discusses

sensitivity runs of the model that

explore the importance of

program design choices and

flexibility in the deployment of

demand response. This is

followed by Section IV which

examines the impacts of the

variability and uncertainty of

demand response on its capacity

value. Finally, Section V

concludes with some policy

implications that arise from the

work presented in this article.

II. Modeling Demand
Response Capacity
Impacts and Decreasing
Returns to Scale

Just as with thermal units, the

reliability impacts of demand

response programs depend on a

Figure 3: Peak Time Rebate (PTR)
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variety of factors. Thermal units

with higher forced outage rates

naturally contribute less to

reliability than do units with

smaller forced outage rates.

Moreover, large thermal units

contribute less to reliability on a

MW per MW basis than smaller

units with the same forced outage

rate. Power system engineers

have developed reliability indices

and applied them to making

incremental assessments of new

capacity additions. The literature

on reliability measurements of

power systems goes back over 50

years with probability measures

introduced in the late 1940s.5 One

of these indices, the loss of load

expectation (LOLE) index,

measures the expected number of

hours with loss of load within a

year. The often used ‘‘one day in

10 years’’ criterion commonly

cited as a planning objective for

LOLEmeans that LOLE should be

about 2.4 hours per year.6

T he effective load carrying

capacity (ELCC) is defined

by as the amount of new load that

can be added to a system at the

initial LOLE after a new unit is

added.7 ELCC can be expressed in

terms of the percentage of the

rated capacity of a unit and has

been used tomeasure the capacity

contribution of wind resources.8

The Sidebar entitled ‘‘Reliability

Indices’’ gives a more detailed

description of ELCC.

W e can measure the ELCC

of a demand response

program in a similar manner, and

have adapted the approach in

Kahn (2004) for this purpose.

Load data from 2002 for CAISO is

used along with publicly

available data on thermal unit

capacities and forced outage

rates. As new thermal units were

added throughout the year, they

were added to themodel. Publicly

available hydro generation data

was available from the year 2000

and this generation was applied

in a deterministic fashion to the

2002 load. The hydro generation

was applied to the load by

matching the highest hydro

generation hour against the

Reliability Indices

Perhaps the most basic probabilistic reliability index is the loss of load probability
(LOLP) index introduced by Calabresse in the 1940s.22 By LOLP wemean the probability of
an outage in a given hour. That is, the probability that in a given hour the amount of
available generating capacity is less than load. The loss of load expectation (LOLE) as
defined in the main text is the expected number of hours of outage in a given year. This is
simply the sum of the LOLP for each hour over the number of hours in a year.23

The effective load carrying capacity (ELCC) reliabilitymeasure was developed in order to
measure the reliability impacts of units.24 ELCC is the amount of new load that can be added
to a system after a new unit is addedwhile keeping the same level of reliability asmeasured
by LOLE.25 So, ELCC measures the capacity contribution of a unit to a power system.

It is important to note that the ELCC is both dependent on the unit itself as well as the
system to which it is added. For example, units that are relatively large compared to the
system as a whole will have a lower ELCC than units whose capacity make up a smaller
percentage of total system capacity, other things being equal. The capacity contribution of
thermal units is often thought of as being equal to their derated capacity where the derated
capacity is the full unit capacity times one minus the forced outage rate.26 The ELCC of a
thermal unit, however, can be less than the unit’s derated capacity. As a result, comparing
the derated capacity of thermal units to each other is not a completely fair comparison of
the contribution to reliability of each unit. More to the point for this discussion, comparing
the ELCC of demand response (or other resources to the derated capacity of thermal units)
will tend to make demand response appear to contribute relatively less to reliability than
thermal units. An alternative that perhaps could provide more direct comparison for
demand response would be to calculate the number of combustion turbine equivalents
(ETCs). In other words, in order to achieve the same level of LOLE as the resource added,
how many combustion turbines would have to be added to the system. A drawback of this
measure is that it is even more system-specific and system-dependent than ELCC
because the appropriate combustion turbine to use as the equivalent will vary in size and
forced out rate depending on the system.

It is sometimes objected that LOLP and LOLE are not good measures of system
reliability because they are only measures of the probability of outage or the expected
amount of time with outages. An outage of 100 MW over an hour has a greater reliability
impact than an outage of 10 MW. Even if the 100 MW outage has half the probability of the
10 MW outage, the 100 MW outage should be given more weight than the 10 MW outage.
While the LOLP and LOLE measures do not do this, an alternative measure, the expected
unserved energy (EUE), weights the size of the outage with the probability of the outage to
give a measure that takes this into account. Simply put, the EUE is the average number of
MWh of outage one could expect to incur.

ELCC can then be redefined in terms of EUE rather than LOLE, so than the ELCC could
be defined as the amount of load that can be added in each hour until the EUE is the same
as before the resource was added to the system. In principle this method using EUE can
result in a different answer for ELCC than when using LOLE. For the system we have
studied, however, using EUE rather LOLE results in very little difference in the results, so
we have only reported the results using ELCC as defined with LOLE. Moreover, LOLE and
EUE are closely related in that LOLE is the marginal rate of increase in EUE.27
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highest load hour and so on

through to the lowest hydro

generation hour against the

lowest load hour. Kahn (2004)

uses this method and also tests

another method of matching

hydro generation against load

and finds that the results do not

differ significantly. Imports are

also treated deterministically in

our calculations.

T he reliability measure LOLE

is sometimes criticized

because it only measures the

expected amount of time that

outages will occur as opposed to

the expected amount of unserved

energy (EUE) or load not met. For

a given system, an hour with

100 MWof unmet load is logically

worse than an hour with only

5 MW of unmet load. In general,

this is a valid concern. However,

for the systemwe have examined,

the LOLE and EUE correspond

closely and using one measure or

the other to define ELCC makes

no material difference to our

results.

For the initial results, the

simulation assumed that the

critical peak period was between

noon and 6 PM with 12 critical

peak days to be called during the

summer months (June through

September). An assumption was

made that the program would be

deployed to maximum effect for

reliability purposes. In other

words, the operator of the

program would choose with

perfect foresight the days that

would be best to declare critical

peak days, which in turn increases

the measured ELCC of the

program.9 This assumption is

relaxed in the next section to show

the importance of choosing the

right days to declare to be critical

peak days. Another key

assumption is that the demand

response amount is perfectly

knowable and predictable. In

reality, this is certainly not the

case, and is examined in Section

IV. The effect of this assumption is

to raise the measured ELCC, thus

giving more capacity credit to the

demand response program than it

is likely to achieve. Finally, many

anticipate that mass market

dynamic pricing programs will

achieve little net energy savings.10

In other words, while consumers

may reduce their demand during

the critical peak hours, they

increase their consumption during

the non-critical peak hours, so, on

an energy basis, consumption is

not reduced. Consumers seem to

substitute consumption in one

time period for another.

The initial results present two

scenarios of the ELCC

measurement with respect to this

substitution. In the first, there is no

substitution effect, so that

reductions during critical peak

result in net energy savings of the

sameamount. The second scenario

produces a very mild substitution

effect in which the reduction

during critical peak hours results

in an increase in consumption over

all the other 18 hours of the critical

peak day. That is, if there is

300 MW of reduction during the

critical peak hours, noon to 6 PM,

all the other hours in the critical

peak day have an increase in

consumption of 100 MW. This

very mild substitution effect is

used in order to be conservative in

our estimates of ELCC. It would

stand to reason that the decreased

consumption between noon and

6 PM would tend to increase

consumption on hours closer to

the critical period such as 6 PM to

10 PM rather than 2 AM as in our

assumption. Nevertheless, it

appears there is very little or no

empirical evidence for how the

substitution effect plays itself out

over the hours of a day. More

study of the timing of potential

substitution effects will be

important as systems increase

their reliance on demand response

and as new end uses like PHEV

(plug-in hybrid electric vehicles)

enter the system.11

The initial results under the

assumptions outlined above are

shown in Figure 4. The figure

shows the MW of demand

response (actual amount of

reduction as opposed to the

enrolled MW) versus the ELCC as

a percentage of the MW of

demand response. The top axis

gives the demand response as

a percentage of the annual

system peak.

The reliability measure
LOLE is sometimes
criticized because it
only measures the
expected amount of
time that outages will
occur.
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At relatively low levels of

response, the ELCC of demand

response is nearly 100 percent.

The selected hours are able to

effectively pick off the most

critical hours and increase

reliability nearly to the same

amount of the response. As the

MW response increases, however,

a decline is seen in the value of

response. At a demand response

level of 2,248 MW, which is

roughly equal to 5 percent of peak

demand, demand response has an

ELCC of about 90 percent with no

substitution effect and less than 80

percent with the mild substitution

effect. 5,000 MW of demand

response shows significantly

degraded ELCCs of about 50

percent and 20 percent for the no-

substitution scenarios and the

substitution scenarios

respectively.12

F or economists, as dismal

scientists, these decreasing

returns to scale are not surprising

as a matter of principle. But why

do they occur in this case? One

answer canbe foundbygoingback

to Figure 1 of the system load

duration curve. The demand

response program modeled has

72 hours of impact that occur over

noon to 6 PM during 12 days.

Through examination of the data

on when peak demand occurs, we

see that the top72 hours of theyear

accounting for 10 percent of

system peak are actually spread

over 17 days rather than 12. This

means that the program as

designed cannot capture all of the

top 72 hours.Moreover, even if the

program could be spread over 17

days rather than 12, 5 of the top

72 hours occur outside the noon

to 6 PM window. More

importantly, however, is that

at a certain point, reductions in

demand during the critical

peak window do little to in

crease reliability. Figure 5 shows

a demand response of 3,000 MW

on 08/01/02 with no substitution

effect.

While the pre-existing peak is

eliminated, the shoulder hours

now constitute a new peak. With

the substitution effect, demand

response ‘‘fangs’’ are created

with the increase of load in the

non-critical peak hours. Figure 6

illustrates this effect.

A s a result, to the degree that

there is substitution, that is,

increased consumption in non-

critical peak hours to match

decreased consumption in critical

peak hours, the capacity value of

CPP- and PTR-type demand

response programs will be much

less than with no substitution.

Substitution effects that are more

likely to be realistic (such as

substitution only to the hours

close to the critical peak period)

would show degradation of the

Figure 5: Example of a Demand Response Program with No Substitution Effect

Figure 4: ELCC as Percentage of Demand Response MW
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capacity value of the demand

response program that is even

more severe.

W hat drives these results?

Most of the LOLE (or

EUE) occurs within just a few

hours out of the year. The top

20 hours in the year account for

over 99 percent of the LOLE with

these hours all occurring in just

four summer days as shown in

Figure 7.13

As a result, targeting those

hours is key. However, once those

hours are targeted – and they seem

to be targeted fairly well with the

particular year examined and the

program design that was

simulated – reducing the LOLP or

EUE for a particular hour by

reducing demand quickly

exhausts itself. Other hours now

start to dominate the LOLE

calculations and programs that

can target those hours help retain

the effectiveness of demand

response programs as measured

by ELCC. Hence, flexibility of

program design and hours

targeted can be important in

achieving effectiveness. These

results depend, of course, on the

system, but given the ‘‘peaky’’

nature ofmany systems in the U.S.

it seems quite possible that these

results are not peculiar to the

particular system and year we

have examined. The next section

addresses these issues of flexibility

and targeting of the right hours.

To the degree that other

systems do not have most of their

LOLE concentrated in just a few

hours, as in Figure 7, then the

results of our simulation would

differ. However, such systems

would have a much less ‘‘peaky’’

load shape than the one we have

examined and thus would not

need demand response as much

as the system we have examined.

III. How Much Does
Flexibility in Demand
Response Program
Design and Deployment
Affect Its Capacity
Value?

The previous section showed

that demand response from CPP

and PTR type programs degrades

in its reliability or capacity value

as the amount of demand

response provided increases.

These results suggest that

increased flexibility in program

design as well as programs

complementary to CPP/PTR

could greatly increase their value.

Discussions of CPP/PTR

programs tend to have fixed

hours for critical peak periods and

limited number of days in which

they occur. This is because rate

designers and regulators are

concerned whether consumersFigure 7: Top 20 Hours LOLP as Percentage of LOLE

Figure 6: Example of a Demand Response Program with Substitution Effect
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are able to understand and react

to dynamic prices.14 In the

simulation from the previous

section, for instance, critical

events were limited to 12 days

during the summer and only

between noon and 6 PM. The

ability to target other days and

other hours would enhance the

effectiveness of the demand

response program, but at the cost

of making the rules of the

program more complicated for

consumers. Prices that have

overly complicated rules make it

difficult for consumers to react to

them so that both inefficiency of

response as well as unhappiness

with the tariff regime arise. There

are many alternative rate designs

for dynamic pricing and some of

these take into account the need

for flexibility. CPP-V (CPP

Variable), for example, is a variant

on CPP that allows for a flexible

critical peak period.

A utomation on a large scale

through efforts such as the

smart gridmaywell be the answer

that allows for more flexible and

therefore more valuable demand

response. The so-called ‘‘Ron

Popeil’’ effect is where customers

can set their preferences ahead of

time and not have to pay direct

attention in real time to fluctuating

prices. That is, as Popeil is famous

for saying about many of his

kitchen appliances, ‘‘Set it, and

forget it.’’ Whether smart grid,

home automation, and the like can

make demand response much

more flexible while keeping rate

structures acceptable to

consumers and whether it is cost-

effective to do so are questions

beyond the scope of this study.

However, in order to examine the

potential capacity value of such

efforts, we calculated what the

maximum capacity impact of a

completely flexible demand

response portfolio would be. For a

given CPP/PTR program size we

assumed that the equivalent

number of MWh of demand

reduction would be available

whenever needed across all hours.

So, for example, for a CPP/PTR

programwith 1,000 MWof impact

for six critical peak hours on 12

days, we calculated the impact of

72,000 MWh15 of demand

reduction. To simulate what the

maximum effectiveness of

completely flexible demand

response might be, the demand

reduction was allocated to the

hours by shaving peak so that the

hourswith thehighest demandare

reduced first.16 The results

measuring the capacity value of

demand response flexibility are

shown in Figure 8.

T he CPP/PTR line (the lower

of the two) shows our basic

results for the CPP/PTR program

discussed above (12 critical days,

noon to 6 PM, no substitution

effect). The maximum flexibility

lineshowstheELCCwith the same

number of MWh of demand

response are deployed in order to

shave peak. At low levels of

demand response (MW

reduction), the flexible demand

response provides more than 100

percent ELCC. This is possible, of

course, because more than the

program amount can be deployed

in a given hour. For instance, even

though the program size may be

1,000 MW, the very top peak hour

can be shaved by more than

1,000 MW.The impactofflexibility

starts to decline rapidly, however,

as the program size increases. This

is not surprising since as we shave

the load shapemore andmore, the

additional MWh get spread across

more hours resulting in less net

gain from additional MWh of

demand response.

The difference between the two

lines in Figure 9 shows the

maximum that can be gained

Figure 8: The Value of Flexibility as Percentage of Demand Response
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above the CPP/PTR baseline by

making demand response flexible.

For relatively small program sizes,

thevalue offlexibility is quitehigh,

but it quickly decreases as the

program size increases. While the

exact value of flexibility from a

reliability/capacity point of view

is system-dependent, and the pace

of decrease of that value as

program size increases is also

system-dependent, it seems likely

that the general picture we have

foundfor thesystemstudiedin this

article holds more generally. As

the program size increases returns

to flexibility in deployment of

demand response decrease

because the hours that contribute

the most to LOLP or EUE have

already been addressed.17

IV. Uncertainty of
Demand Response

Although they accept that

demand response programs can

provide peak reduction, there are

many who are still concerned that

the level of demand response is

uncertain. For example, 1,000 MW

of reduction might be expected,

but the actual amount of reduction

realized could be some number

either greater or smaller than

1,000 MW. For this reason they are

reluctant to count demand

response programs in resource

adequacy. While there is little

evidence about the variability of

response, the California SPP

provided some insights. In that

pilot, various demand response

programs were tested and it was

possible to calculate the variability

of response. Ninety-five percent

confidence intervals ranged from

plus or minus 6 percent to 18

percent of the mean response. So,

for example, if the expected

response level was 1,000 MW,

using 10 percent as the variability

of the response, the range 900 MW

to 1,100 MW covered the actual

response with 95 percent

probability.18To test the impactsof

the uncertainty of demand

response, we introduce a

probability distribution in our

model to make demand

uncertain.19Weestimate theELCC

for various levels of demand

response uncertainty as measured

by the coefficient of variation (i.e.,

standard deviation divided by the

mean). The programs tested in the

California SPP, for example, had

coefficients of variation of around

3 to 9 percent. A generating unit

with a forced outage rate of 5

percent has a coefficient of

variation of 23 percent.20

T he results from the

simulation of uncertain

demand response are shown in

Figure 9.

Figure 9 shows the ELCC as a

percentage of expected or mean

demand response at a series of

expected response levels, ranging

from 1,000 MW to 5,000 MW, at

different levels of uncertainty of

the response as measured by the

coefficient of variation. The line

with a coefficient of variation of 0

percent is our basic result with no

substitution effect, as reported in

Section II above. As shown in

Figure 9, a coefficient of variation

of 12 percent makes only a small

difference in the reliability

effectiveness of the demand

response program. At 30 percent

and 45 percent coefficient of

variation, however, the demand

response program suffers

degradation due to its variability.

One of the interesting aspects of

the chart is that uncertainty effects

start to disappear at higher

demand response levels. For

example, at 30 percent coefficient

of variation, the demand response

program suffers in effectiveness

relative to the certain demand

Figure 9: ELCC as Percentage of Demand Response
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scenario (0 percent coefficient of

variation) at relatively low levels

of expected demand response

(1,000 to 3,000 MW). At higher

levels of demand response,

however, the results are close to

the certain case.While this sounds

good for higher demand response

levels, it must be remembered

that at those high levels the

capacity value of demand

response is significantly

degraded. One possible

explanation is that, as the

program size increases, neither

the upside of having more

demand response by chance helps

much nor losing a little hurts

much since those are not likely to

have high capacity value anyway.

A n important conclusion

from the examination of

uncertain demand response

follows if one thinks that the

available evidence from the

California SPP is an accurate

measurement of the potential

uncertainty in CPP/PTR type

programs. In this situation, the

uncertainty of the level of response

is likely to have little effect on the

capacity and reliability value of

these demand response programs.

The California SPP evidence

suggests a coefficient of variation

of between 3 and 9 percent. At 12

percent coefficient of variation

response shows little difference

from certain response as seen in

Figure 9. As with the other results

in this article, while they would

seem likely to hold for a broad

category of cases, the results have

only been simulated on one

particular system configuration.

Simulations particular to the

system in question should be

conducted before policy

conclusions are made for that

particular system.

V. Policy Implications
and Conclusions

This article has examined the

capacity impacts of particular

types of demand response

programs using data from

California during 2002. While

CPP/PTR programs have

constraints in how they are

operated, in terms of the number

of days and limitations on the

hours of operation (i.e., the peak

period), they offer benefits by

increasing system reliability, and

therefore, reducing capacity

needs of the electric power

system. These benefits, however,

decrease substantially as the size

of the programs grows relative to

the system size. More flexible

schemes for deployment of

demand response can help

address the decreasing returns to

scale in capacity value, but more

flexible demand response has

decreasing returns to scale as

well. The apparent good news for

demand response from this study

is that the little evidence that there

is on the uncertainty of the level of

demand response suggests that

uncertainty does not reach a level

that greatly impairs its ability to

contribute to reliability. All of

these conclusions depend on the

types of programs studied and the

particular system examined.

However, as discussed above,

there are good reasons to think

that the same conclusions would

hold true for other systems as

well.

S everal potential policy

implications emerge out of

these conclusions. First, when

measuring demand response

potential or demand response

program cost effectiveness, it is

typically assumed that the

reliability effectiveness or

capacity value of the program

does not decrease with added

demand response relative to the

overall size of the system. This

assumption seems unlikely to be

true, and the probable decreasing

returns to scale may have rather

large impacts on overall program

potential and its cost

effectiveness. As policymakers

look towards massive

deployment of demand response,

these impacts will become

increasingly important.

Second, the results on the

added capacity value of flexible

demand response above that of

CPP/PTR-type programs

suggests that the capacity value in

smart appliances, home

automation, and the like, perhaps
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comes in two forms.As enablers of

CPP/PTR programs, they will

increase the average response

rates in the programs bymaking it

easier for consumers on dynamic

rates to respond.21 Automation

may also make it easier for more

flexible definition of dynamic rates

by targeting those demand

reduction hours that do not

necessarily fall within a pre-

defined critical peak window.

Both of these effects of automation

will tend todecreaseas the amount

of demand response in a system

increases. Policymakers should

incorporate these effects and their

decreasing returns to scale in their

ratemaking decisions and smart

grid policies.

T hird, there is little evidence

available on the uncertainty

of demand response from mass

market programs such as CPP/

PTR. As we demonstrate in our

simulations, uncertainty at fairly

high levels can have a dramatic

impact on the capacity value.

While the small bit of evidence

from the California SPP suggests

that the level of uncertainty is not

great enough to materially

decrease the capacity value of

mass market demand response,

more evidence is needed to better

understand the uncertainty of

demand response.&
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Endnotes:

1. In 2008, California approved
default dynamic rates for electric
power customers, and Colorado,
Maryland, and Ohio encouraged
demand response with regulatory
measures or legislation. Also, FERC
issued a final rule, Order 719, in
October 2008 that was intended to
remove a number of barriers to
demand response participation in
organized markets. See FERC
(2008a,b), Assessment of Demand
Response and Advanced Metering.

2. The system analyzed is a
combination of CAISO and SMUD
using load from 2002. Complete
details can be found in Kahn (2004).

3. Different types of demand response
programs include direct and indirect
load control, dynamic pricing
programs, etc. See Earle et al. (2008) for
an overview of various types of
demand response.

4. The roots of such programs can be
traced back to longstanding programs
of many utilities that offered large
industrial customers a price break in
all hours for signing up to a rate where
their supply could be interrupted for a
short duration a maximum number of
times during a year. Those programs
suffered from the ‘‘take-the-price-
break-for-granted’’ problem, when the
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utility found that it did not need to
interrupt the customers for many
years at a time, and then needed to, to
the dismay and grumblings of the
interruptible customers who had
begun to feel entitled to not being
interrupted. The design of these newer
approaches tends to tie the demand
reduction more closely to the payment
for it. Letzler (2007) gives a discussion
of PTR type programs in the context of
behavioral economics.

5. Calabresse (1947).

6. There is some confusion about
precise interpretation of the tradition
‘‘one day in 10 years’’ criterion. It was
originally developed when
computational resources were
relatively expensive and LOLP
calculations represented load as one
peak demand value per day. Using an
hourly load model results in
something less than 2.4 hours per year
when the same system is evaluated
with an hourly load model as opposed
to assuming that load in every hour of
the day is the peak load. One test of
these relationships found an LOLE
expressed in hours/year of 0.25
corresponding to 0.1 days/year using
the daily peak model (see Jamali
(1979)). For ELCC calculations in large
systems, the precise interpretation
may not matter much since the LOLE
versus peak load profile has an almost
linear shape on log-linear scales for
LOLE values below 0.3 days/year (see
Billinton and Allan, 1984, Figure 2.10).

7. Garver (1966).

8. Kahn (2004).

9. Other than these assumptions, the
simulation is agnostic with respect to
other aspects ofprogramdesign suchas
when the price signal is issued, what
typeofpricesignal, orhowthe response
is achieved (through a customer
behavior or through automation).

10. See, for instance, Faruqui and
Wood (2008) for a discussion of the
general level of various types of
impacts from dynamic pricing. York
and Kushler (2005) discusses the
nexus between energy efficiency and
demand response and how one
measure may reinforce effects in the
other. IBM (2007) and Summit Blue
(2006) find some conservation effects.

11. In this regard, the work of NERC
to establish standards for gathering
data on demand response may be
critical. See NERC, Data Collection for
Demand-Side Management. Centolella
and Ott (2009) suggest some methods
to better understand the intra-day
effects of demand response.

12. By comparison, one of the few
public references on the ELCC of
demand response can be found in the
Arizona Public Service Company’s
Resource Plan Report (at 97). For a
variety of commercial and industrial
load management programs they
report an ELCC between 70 and 80
percent. They do not, however, seem
to report the percentage of peak
demand that the load management
programs comprise.

13. The numbers are from our
calculation of LOLP for each day in the
simulation.

14. See Bonbright et al. (1988) for the
classic list of ratemaking criteria,
which include simplicity and
understandability as important
attributes.

15. 72,000 MWh = 1,000 MW ! 12
days ! 6 hours/day.

16. While this approach might not
result in the precise maximum ELCC
for completely flexible demand
response, given the close relationship
for the system studied between the
level of demand and LOLP, it is likely
very close.

17. It should also benoted thatwehave
assumed perfect foresight so that the
capacity value implied by each of the
lines in the figure is likely overstated.

18. See, Earle et al. (2008). The pilot
tested a variety of CPP style programs.

19. A discrete distribution with a
triangular shape was used for ease of
computation. It seems unlikely that the
particular form of the distribution is of
much consequence in the results. We
also assume that the amount of realized
demand response is independent of
system load. This might not be true, as
there may be more air conditioning
load to reduce on a day that is
particularly hot, meaning a positive
correlation between load and demand
response. On the other hand, on a

particularly hotday, consumersmaybe
more reluctant to reduce their air
conditioning load, resulting in a
negative correlation between demand
response and load.

20. Simply comparing the coefficients
of variation of a generating unit and
demand response programs does not
give an adequate comparison as the
shapes of their distributions are very
different. The coefficient of variation
of a generating unit with a 5 percent
effective forced outage rate is high
because it cannot produce anything
for 5 percent of the time.

21. In this regard, it is possible to
imagine that automation might
decrease the uncertainty of demand
response by removing the behavioral
component in the response other than
the initial system configuration.

22. Our terminology differs a little bit
from the original terminology in that
LOLP originally meant the number of
days per year of expected capacity
shortages. More precisely speaking,
this is an expectation rather than a
probability, so we use the term LOLP,
as others do, to refer to the probability
of outage in a given hour.

23. If for hour iwe write the loss of
load probability asLOLPi, then LOLE

can be written as LOLE ¼
X8760

i¼1

LOLPi.

And, LOLPi ¼ Pr
P

Cj <Li
! "

where Cj

is the random variable of capacity of
generating unit j in hour i and Li is the
load in hour i.

24. Garver (1966).

25. If C0 is the random variable of new
capacity, then ELCC is the MW of new
load added to each hour such that
LOLE ¼

P
Prð

P
Cj þ C0 < Li þ ELCCÞ

where LOLE is the original loss of load
expectation before adding the new
unit C0.

26. In other words, a thermal unit with
capacityof 100 MWanda forcedoutage
rate of 5 percent (or 0.05) is credited
with providing 95 MW of reserves.

27. That is, if the load increased by a
small increment in every hour, the
LOLE gives the resulting rate of
increase in the EUE.
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