

APPUI EXTERNE RELATIF À L'APPEL D'OFFRES A/O 2021-02 POUR LES ACHATS D'ÉLECTRICITÉ

RAPPORT DU CONSULTANT MERRIMACK ENERGY GROUP INC.

Hydro-Quebec

Benchmark Report Deliverable Two

Comparison of Benchmark Resources to Resources Selected by Hydro-Quebec Via the 300 MW Call for Tenders

March 10, 2023

Prepared By:

1	IN1		.2
	1.1	OVERVIEW	2
	1.2	BACKGROUND	5
	1.3	COST FACTORS	6
	1.3	.1 Capital Cost and Operating Costs of Wind Projects	6
2	ME	THODOLOGY, APPROACH, RESULTS AND CONCLUSIONS	. 8

1 INTRODUCTION

1.1 OVERVIEW

Merrimack Energy Group, Inc. ("Merrimack Energy") was retained by Hydro-Quebec to undertake a benchmark cost assessment of the comparative costs of renewable energy resources in the Northeast United States ("US") and eastern Canadian markets relative to the costs of the proposals submitted to and selected by Hydro-Quebec in its distribution activities under its most recent December 2021 Call for Tenders. Hydro-Quebec issued two Call for Tenders, including one which calls for the purchase of a block of renewable energy with a 480 MW capacity contribution to the winter peak with energy needs of 4.2 TWh on an annual basis and a second which requires a block of wind energy having 300 MW of installed capacity. The new long-term supply contracts expected from the December 2021 Calls for Tenders are required to meet the energy and power needs of Hydro-Quebec.

As part of the contract approval process associated with the projects selected via the 300 MW Call for Tenders, Hydro-Quebec is submitting this report to demonstrate that the contract pricing from its 300 MW Call for Tenders is competitive and represents lowest reasonable cost when compared with market options in neighboring markets.

For this assignment, Merrimack Energy is required to provide two deliverables.

Deliverable 1 includes a benchmark cost assessment of renewable energy resources in the Northeast US and eastern Canadian markets in terms of unit costs per energy source and the expected prices for the future for a specified list of renewable resources. The list of renewable resources required includes:

- Wind power
- Wind power with energy storage
- Hydro
- Solar Power
- Solar power with energy storage
- Biomass power
- Renewable natural gas

Merrimack Energy provided of final version of the Deliverable 1 Report to Hydro-Quebec in early February 2023. The Report is entitled "Benchmarking the Cost of Supplying Electricity from Renewable Energy Sources Relative to Hydro-Quebec's December 2021 Call for Tenders" ("Benchmark Report"). The summary table which provides the estimated Levelized Cost of Energy ("LCOE") and Real

Levelized Cost calculations in \$/MWh in both US and Canadian dollars resulting from the Deliverable 1 Benchmark Report is included as Appendix A to this report for reference.

Deliverable 2 requires Merrimack Energy to provide a comparison of the unit costs of winning bids in Hydro-Quebec's Call for Tenders issued in December, 2021 to benchmark resources potentially available in northeast power markets, including the cost of transporting the power to Quebec and factoring in the Quebec business, economic and regulatory context. Hydro-Quebec wishes to obtain an assessment of the anticipated real unit cost (in real levelized \$/MWh in Cn\$) per originating renewable energy source as the basis for comparison to reflect the same methodology used by Hydro-Quebec for its evaluation and selection of resources.¹

Under its regulations, the Regie requires that Hydro-Quebec undertake a comparative analysis of the cost of power for similar products from neighboring Northeast power markets. The "similar products" standard is important to define in undertaking the benchmark study and comparison to Call for Tenders bids and can be identified to reflect project technology, size, product specifications, contract term, timing for the Call for Tenders and project in-service date. For example, as described in Merrimack Energy's Benchmark Report, the similar product standard should include size of the resource, timing of the solicitation process for Hydro-Quebec, and commercial operation date of the project, if possible.

This assessment focuses on comparing the cost of power from the bids selected in response to Hydro-Quebec's 300 MW Call for Tenders with the cost of resources for the same technology type in other North American markets as a benchmark cost.² For the 300 MW Call for Tenders, all projects submitted and selected were wind projects.

The methodology proposed by Merrimack Energy is designed to assess the competitive cost of long-term power from the winning bids from Hydro-Quebec's recent Call for Tenders with general industry cost data as well as a sample of other similar project types proposed and under development in neighboring North American markets on a real levelized cost basis over consistent contract terms (e.g., 30-year contract terms for wind and biomass resources and 20-year terms

¹ For the final evaluation, Merrimack Energy has also utilized Hydro-Quebec's discount rate to ensure the evaluation methodology for both resources submitted and evaluated in Hydro-Quebec's Call for Tenders and for evaluating benchmark resources is consistent.

² Merrimack Energy has served as Independent Evaluator for several recent high-profile Request for Proposal processes for renewable resources in several regions of the US and has conducted analysis of renewable project costs.

for solar and storage resources) based on the expected useful life of such resources. The analysis will also include the cost of transmission from neighboring Northeast markets assuming the power would be purchased in the neighboring market and delivered to Quebec. In cases where multiple data points exist for project proposals, as noted, Merrimack Energy will focus on the cost of projects in the first and second quartiles as the most competitive options relative to the bids selected by Hydro Quebec, which would likely be the most competitive proposals as well. In addition, Merrimack Energy will strive to use publicly available data inputs for each market as a primary source of data if available. If publicly available sources of data are not readily available in neighboring markets, Merrimack Energy will attempt to correlate data in other markets with the data in question for the local markets and apply trends in costs to develop capital cost, operating costs and other cost inputs and assumptions in a consistent manner.

Merrimack Energy has found in preparing such benchmark studies that use of only levelized cost of energy studies can be misleading based on differences in location, capacity factor, project size, contract term, and market cost structure. When capital cost information was available, Merrimack Energy calculated the annualized costs associated with the amortization of the capital costs over the contract term and added estimates of O&M costs and transmission costs for delivering the power from the select market into Quebec, assuming Hydro-Quebec could procure similar resources in other northeast markets and deliver the power to Quebec. Merrimack Energy also relied upon data from other Call for Tenders or Requests for Proposals as a check on the reasonableness of the comparative costs generated.³ As we did in previous benchmark reports, Merrimack Energy will compare the costs of renewable or other projects bid into Hydro-Quebec's Call for Tenders with similar resources in New York, New England, Ontario, New Brunswick and Nova Scotia, where applicable. Merrimack Energy also addressed other factors in preparing the sample costs including tax credits and incentives in the US and Canada, capacity factor differences, and local conditions for adjusting benchmark costs.⁴

³ Section 3 of the Hydro-Quebec Mandate for this assignment includes as Objective 1 identification and analysis of the results of recent North American Calls for Tenders in terms of the unit cost per energy source. However, based on our role as Independent Evaluator for utility solicitations, it is very difficult to gain access to such bid data immediately after completion of a solicitation process given the confidential nature of the data and the market timing associated with Hydro-Quebec's Call for Tenders. Some data may be available from solicitations after contracts are executed and filed for approval with regulatory Commissions but the timing of such solicitations with regards to Hydro-Quebec's Call for Tenders may not correlate, particularly in light of recent price volatility.

⁴ In previous Call for Tenders, Hydro-Quebec in its distribution activities generally conducted a procurement process designed to procure a targeted resource (i.e., wind only, or biomass only). As a result, Merrimack Energy's previous benchmark studies prepared for Hydro-Quebec during the period 2005-2015 focused on one specific resource type for comparison purposes. The technologies and resource types are much broader for this assessment.

Since the cost of transmission and other related services varies based on project location, the initial focus of this assessment will be on a comparison of the cost of resource-generated energy. In addition, for the wind resources selected, the focus of the competitive economic analysis will be on recent project costs since the cost of wind turbines and the commodities necessary to produce the turbines and related facilities has increased significantly, similar to cost increases throughout the electricity generation market. As demonstrated in Merrimack Energy's Benchmark Report, several wind power projects under development have recently announced capital cost increases for their projects. The timing of the increase in capital costs for wind turbines, any differences between subsidies for renewable resources in the US and Canada, transmission requirements, and other locational differences that influence the wind regime makes an accurate comparison between the costs of the wind resources selected by Hydro-Quebec Distribution and benchmark resources challenging.

Although it is difficult to conduct a consistent and equivalent evaluation of wind and other renewable energy projects, Merrimack Energy has developed a reasonable approach for conducting the comparative cost assessment required by the Regie. The methodology undertaken by Merrimack Energy assesses the competitive cost of long-term power from the winning wind project bids from the 300 MW Call for Tenders relative to benchmark costs for wind generated electricity (including an assessment with and without transmission costs) based on general industry cost data as well as a sample of other wind projects proposed and under development in other North American markets on a real levelized cost basis over a 30-year term. The analysis also includes the cost of transmission from neighboring Northeast markets to Quebec.⁵

Regarding Hydroelectric resources, due to the relatively scarce development of projects and with each project having unique characteristics, it is more difficult to find direct local comparisons for costs of newly developed hydroelectric resources. For hydro generated electricity Merrimack Energy is relying largely on publicly available data given the limited amount of actual bid data for comparable hydro resources.

1.2 BACKGROUND

There are a number of factors that influence the cost of wind resources. These include the capital cost of the equipment, the cost of financing the project,

⁵ The cost of transmission from each relevant market is based on the transmission tariff rate associated with neighboring markets. However, it is quite common that to deliver wind energy to the market hubs, additional transmission capacity may be required due to the general remote nature of these projects relative to the location of the best wind sites.

operation, maintenance, and other administrative costs (e.g., property taxes and insurance costs), site-specific conditions, the size of the project, project configuration, and government incentives such as production tax credits, accelerated depreciation and local subsidy programs. Based on recent dramatic changes in electric power project costs resulting from such factors as: (1) supply chain constraints affecting the availability and cost of generating equipment; (2) project input commodity costs for a wide range of raw materials required in the production process such as steel, copper, cement, etc.; (3) inflationary trends affecting labor and other project development costs; (4) increases in interest rates in the US and other markets which affects the cost of borrowing to construct such projects; (5) worldwide competition for renewable resources; (6) exchange rate impacts; and (7) legislative and regulatory initiatives to increase subsidies for renewable projects, it is important that the cost of benchmark resources should be assessed in conjunction with Hydro-Quebec's timing for its Call for Tenders in which bids were due in July 2022 and projects are expected to come on-line in 2026.

The strength of the wind resource (i.e., wind regime), including wind speed and wind speed distribution over the course of the year, and the matching of the wind resource to the wind turbine power curve, is also a major determinant of project cost. These factors determine project output and the associated capacity factor of the wind system. Since most of the costs associated with a wind generation facility are fixed costs, the higher the capacity factor, the lower the per-unit cost.

However, since the cost of wind generation is highly site specific, it is very difficult to consistently and equitably compare the economics of various projects since each project has a unique set of local conditions. Unlike other generation technologies, such as combined cycle or combustion turbine facilities that generally have a standard design and fairly consistent cost characteristics, the economics of wind generation can vary considerably in a number of areas.

1.3 COST FACTORS

1.3.1 Capital Cost and Operating Costs of Wind Projects

The capital cost of wind projects has been rising rapidly over the past year. An article on wind project costs increases by IHS Markit, a part of S&P Global, issued on January 31, 2022⁶ identified the major drivers of cost increases for wind projects based on discussions with Original Equipment Manufacturers ("OEM"). The article

⁶ IHS Markit, "North America Wind Capital Cost and LCOE Outlook", January 2022.

notes that the cost of onshore wind fell 40% in the latter half of the 2010's; however, prices are now on the rise, and that trajectory is set to continue, as cost increases and COVID induced bottlenecks snarl supply chains. For example, Vestas indicated it expected costs to continue to rise through 2022 and beyond because the company expected an increased impact from cost inflation related to raw materials, wind turbine components and energy prices.

The article also noted that the cost increases behind the price hike span materials, freight, labor needs coming out of the pandemic, and geopolitical risk. Rising material costs for aluminum, copper, fiber glass resins, and more have played a prominent role. Higher raw material prices are resulting in higher costs for all critical components including towers, blades, power electronics, and foundations. The top of the material cost list is the increase in steel prices, which accounts for a significant portion of wind project costs. In addition, increasing transportation and logistics costs are expected to continue to affect the wind power industry throughout 2022.

Based on recent increases in capital costs (which include the cost of turbines plus balance of plant costs plus development costs plus interconnection and network upgrade costs) for wind projects, capital costs now consistently exceed \$2,000/kW installed (in nominal US dollars) in markets throughout the US. Since the cost of wind power is generally higher in the Northeast than other prominent wind regions in the US such as the PacifiCorp northwest and Midwest markets, Merrimack Energy has estimated the LCOE for wind based on a range of capital costs of \$2,000/kW (US\$) to \$2,500/kW (US\$). Actually, within the past two months we have witnessed proposals for mid-sized wind projects with capital costs (including network upgrade costs) of over \$2,500/kW (US\$).⁷

In addition to the recovery of capital-related costs, project developers also incur annual operation, maintenance and administrative costs and other operating expenses. The largest operating expense, by far, are scheduled maintenance, turbine repair costs and warranties. Other annual operating expenses include infrastructure and balance of plant maintenance, administrative and general costs (A&G), land royalties, property taxes, project insurance, electrical usage, and contingency.

The US Department of Energy (DOE) (Land Based Wind Market Report 2022) estimated O&M costs for wind projects to average about \$21/kW-year (US\$) for projects that have entered service since 2010. According to DOE, O&M costs

⁷ Merrimack Energy is also seeing increases in network upgrade costs required to construct the facilities necessary to connect the projects to the utility system due to the increasing number of renewable energy projects in utility interconnection queues throughout the US.

represent about 50% of all total operating costs, which according to DOE is estimated to be about \$44/kW-year (US\$). There are a number of other costs that should also be included in operating costs such as insurance, property taxes, capital expenditures, etc. We have seen estimates of total operating costs to range from about \$35/kW-year (US\$) to over \$50/kW-year (US\$). The NREL ATB calculates a Fixed O&M rate of \$42.19/kW-year (US\$) for wind projects.

Merrimack Energy is therefore using an operating cost consistent with the NREL value of \$42.19/kW-year (US\$) starting in 2026 and escalating annually by inflation, utilizing Hydro-Quebec's internal forecasted annual inflation rates.

2 METHODOLOGY, APPROACH, RESULTS AND CONCLUSIONS

Given the recent dramatic increase in the capital cost of wind projects and other generation options, a valid comparison of the market price of generation resources with the projects selected in the 300 MW Call for Tenders requires an assessment of only the most recent projects proposed or contracted. For wind, only the prices of projects contracted within the last eight months to a year will be comparable with the projects bid into the 300 MW Call for Tenders given the timing of the bids submitted to the December 2021 Call for Tenders.

To assess the pricing of bids submitted and selected from Hydro-Quebec's 300 MW Renewable Energy Call for Tenders (A/O 2021-0), Merrimack Energy has developed real levelized costs for market benchmark resources in neighboring power markets to compare to the real levelized cost of the bids selected by Hydro-Quebec from the 2021 300 MW Call for Tenders⁸. Table 1 below provides a summary of the bids selected by Hydro-Quebec from its 2021 300 MW Call for Tenders, including the real levelized cost with and without transmission and integration costs. Merrimack Energy has prepared real levelized benchmark costs for wind resources in neighboring Northeast power markets to match the portfolio

⁸ Through the 300 MW Call for Tenders, Hydro-Quebec was seeking to conclude contracts for the supply of electricity from wind energy up to a maximum of 300 MW. This additional power corresponds to a commitment to make a fixed and guaranteed quantity of power available for at least 100 hours during the winter period from December 1 of one year to March 31 of the following year. This availability must at least cover a daily time slot of three hours, i.e., during the hours (end time) ending at 8, 9, 10 in the morning or at 6, 7, 8 pm, or for periods of longer hours. There is also a requirement for bidders regarding Quebec and regional content that could impact pricing. The bidder must aim for 60% of the overall expenses of the wind farm to be made in Quebec. However, the percentage of Quebec content may not be less than 50% of the overall wind farm expenditure incurred in Quebec. With regard to regional content in the areas identified in the Call for Tenders, bidders must aim for overall expenses associated with the wind farm to be 35%. There is also a community involvement requirement associated with a demonstration that the local community has a stake in the control of its project at the time of submission of its bid and for the contract term. Projects selected must pay the local community where the project would be located the annual sum of \$5,700 per MW installed on the territory of the local community.

of bids selected by Hydro-Quebec. Real levelized costs have been prepared under two cases: (1) Case 1 which does not include applicable transmission related costs for either the bids selected by Hydro-Quebec or the benchmark resources; and (2) Case 2 which includes applicable transmission related costs for both the bids selected and benchmark resources required to deliver the power to the Quebec market. The comparative results for each case are described in this memo.

Bid No.	Туре	Capacity (MW)	Energy (MWh)	Term (Yrs)	Trans Cost - \$2022 per MWh (Cn)	Losses – integration service (firming and balancing and curtailment cost - \$2022 per MWh (Cn)	Real Levelized Cost of Energy - \$2022 per MWh (Cn)	Final Project Cost – energy, losses, integration service, transmission costs and curtailment - \$2022 per MWh – (Cn)
Col 1	Col 2	Col 3	Col 4	Col 5	Col 6	Col 7	Col 8	Col 9
16	Wind	180	595,085	30	\$7.10	\$2.61	\$68.78	\$78.49
18	Wind	122.3	380,800	25	\$7.63	\$5.03	\$64.47	\$77.13
Total			975,885					\$78.01

Table 1: Summary of Bids Selected for 2021 300 MW Call for Tenders

In addition to the cost information provided in Table 1 for the selected resources, project 16 provided a commitment of 60% for Quebec content and 5% for local content that the bidder undertakes to achieve. Bidder 18 provided a commitment of 50.1% for Quebec content and 10% for regional content.⁹ Since regional content was not binding on either project, Merrimack Energy would expect that the levels expressed by both bidders would have little impact on pricing. Merrimack Energy would expect that Quebec content requirements and the levels guaranteed may have some impact on pricing, particularly for bidder

⁹ Under Hydro-Quebec's evaluation and ranking process, bids that have met minimum Stage 1 requirements are individually evaluated against a set of eight criteria, including Quebec and Regional content criteria. For Quebec content a bidder that provides a Guaranteed Quebec Content of 60% receives 0 points with ranges of +10 points for 70% or above and -10 points if 50% or lower. For Quebec content, Bidder 16 was awarded 0 points, while Bidder 18 was awarded -5 points. For Regional content, bidders that commit to 35% would receive 0 points with ranges of 10 points for 45% or above and -10 points for less than 25%. In this case, both bidders received -10 points in this category, since Bidder guaranteed 5% and Bidder 18 guaranteed 10%.

16 whose Quebec content is nearly 10 percentage points higher than bidder 18 commitment¹⁰.

Merrimack Energy has developed estimates of the real levelized costs of comparable benchmark projects for the Northeast US and eastern Canada (New England, New York and Ontario) as a comparison to the real levelized costs of bids selected by Hydro-Quebec from Hydro Quebec's 2021 300 MW Call for Tenders. Merrimack Energy initially prepared a benchmark report¹¹ which provides estimates of comparable costs for renewable resources in New England and New York ("bus bar costs") without any transmission costs included to deliver the power to the Quebec market. The benchmark cost analysis was developed using two methodologies: (1) calculate the real levelized cost based on the sum of the Net Present Value of capital cost for wind and hydro projects (including network upgrade costs and Operations and Maintenance ("O&M") costs divided by the Net Present Value of the generation from the projects for those markets from which the project emanate¹²; and (2) calculate the levelized cost of wind projects based on levelized project costs for wind projects in New England and New York based on bid data adjusted for cost increases experienced for wind projects to Q3 2022 to match the date for receipt of bids for the 2021 Hydro-Quebec Call for Tenders. Since there was little information regarding benchmark costs for eastern Canadian Provinces, Merrimack Energy has utilized the benchmark costs for New England and New York as samples. The initial costs for wind (without transmission costs added) are provided in Table 2 below¹³. For example, data in the first three rows of columns 2 reflects the projected levelized cost for wind for each capital cost level identified. Column 3 includes the same costs but calculated in Canadian dollars based on Hydro-Quebec's projected exchange rate for US and Canadian dollars. Columns 4-5 calculate the costs in real levelized dollars to match Hydro-Quebec's methodology for evaluating bid resources. Column 6 presents the real levelized cost based on Hydro-Quebec's discount rate to reflect a consistent comparison of costs for the benchmarks and bids selected from the 300 MW Call for Tenders.

¹⁰ It is also interesting to note that the real levelized cost for the two lowest cost projects from the 480 MW Call for Tenders were significantly lower than the real levelized costs for the projects selected from the 300 MW Call for Tenders

¹¹ See Final Report of Merrimack Energy Group, Inc., "Benchmarking the Cost of Supplying Electricity From Renewable Energy Sources Relative to Hydro-Quebec's December 2021 Call For Tenders", January 31, 2023.

¹² Data associated with capital costs of benchmark wind generation resources includes network upgrade costs since a

sample of the projects utilized are based on bid data which includes network upgrade costs for the resources. ¹³ The data in this table is taken from Table 23: Summary of Northeast US LCOE Calculations contained in Merrimack Energy's Report entitled "Benchmarking the Cost of Supplying Electricity from Energy Sources Relative to Hydro-Quebec's December 2021 Call for Tenders."

Resource Cost Assessment	Levelized Cost of Energy (\$/MWh US\$)	Levelized Cost of Energy (\$/MWh Cn\$)	Real Levelized Cost of Energy (2022 \$/MWh US\$)	Real Levelized Cost of Energy (2022 \$/MWh Cn\$)	Real Levelized Cost of Energy (2022 \$/MWh Cn\$) Based on Hydro- Quebec Discount Rate of 2.87%
Col 1	Col 2	Col 3	Col 4	Col 5	Col 6
Wind					
Capital Cost - \$2,000/kW (US\$)	\$66.36	\$86.27	\$47.77	\$62.11	\$59.85
Capital Cost - \$2,250/kW (US\$)	\$72.48	\$94.22	\$52.18	\$67.82	\$65.29
Capital Cost - \$2,500/kW (US\$)	\$78.59	102.17	\$56.57	\$73.56	\$70.73
New England LCOE (US\$)	\$73.92	\$96.10	\$52.23	\$69.17	
New York LCOE (US\$)	\$73.92	\$96.10	\$52.23	\$69.17	

Table 2: Summary of Northeast US LCOE Calculations

The initial assessment involves a comparison of wind project costs for both the benchmark resource and Hydro-Quebec's selected bids without transmission costs included in the evaluation. Based upon Merrimack Energy's estimate of the benchmark resource real levelized cost for wind of \$70.73/MWh (Cn\$) based on capital costs at \$2,500/kW (US\$) and using Hydro-Quebec's discount rate of 2.87% (last column in Table 2), both wind projects selected by Hydro-Quebec (See Column 8 of Table 1 without transmission and other costs) have real levelized costs below the estimated benchmark costs. At a capital cost of \$2,250/kW, one wind project selected by Hydro-Quebec is below the benchmark cost and one is above the benchmark¹⁴. At a capital cost of \$2,000/kW, both wind projects are above the benchmark. As a note to this analysis, since completing the final draft of the Benchmark Report for Deliverable 1, Merrimack Energy has seen wind projects bid into an RFP in the western US with proposed capital costs of over \$2,500/kW (US\$), including Network Upgrade Costs, in a region of the US that we would expect would have lower overall capital and operating costs for wind projects than the Northeast US and eastern Canada.

¹⁴ Note that the levelized costs for wind for New England and New York (rows 4-5) would correspond to a capital cost that is between \$2,250/kW (US\$) and \$2,500/kW (US\$).

Merrimack Energy has also provided benchmark costs for comparison to the total real levelized cost of the bids selected by Hydro-Quebec (Col 9 of Table 1) that include transmission costs to deliver the power to Quebec from New England and New York, as well as from Ontario. Tables 3, 4 and 5 below include the transmission costs assumed for delivery of power for wind projects from New England to Quebec, from New York to Quebec, and from Ontario to Quebec to compared against the real levelized cost of power including energy losses, integration service, transmission costs and curtailment costs evaluated by Hydro-Quebec and included in the selection of the final list of two wind bids selected (last column of Table 1).

Transmission Service	Rate	Comments
Through or Out Service – Schedule 8	\$1.60895/MWh	
Schedule 1 – Scheduling, System Control and Dispatch Services	\$1.751180/kW-year should equal about \$.57/MWh	
Schedule A – US portion of Phase I/II HVDC facilities	Previous rate used for other benchmark studies was \$2.50/MWh	A transmission customer shall pay the Schedule 20A Service Provider's Phase I/II HVDC – TF Services charge to the Schedule 20A Service Provider.

Table 3: ISO-NE Services and Tariffs to Deliver Power to Hydro-Quebec System

Table 4: NYISO Services and Tariffs to Deliver Power to Hydro-Quebec System

Transmission Service	Rate	Comments
NYISO Transmission Service	\$2.19/MWh	Rate to Hydro-Quebec from
Charge		NYPA to Chateauguay
NYPA Transmission Service	\$4.62/MWh	TSC rates differ on each utility
Charge		system. The Consolidated
		Edison rate is \$7.19/MWh and
		the Niagara Mohawk rate is
		\$9.9684. Merrimack is using
		the NYPA rate.

Table 5: Ontario Services and Tariffs Deliver Power to Hydro-Quebec System

Transmission Service	Rate	Comments

Ontario Export Transmission	\$1.78/MWh	Rate to Hydro-Quebec from
Service ("ETS") Charge (Cn \$)		Ontario

Table 6 provides the real levelized costs for the three wind benchmark capital cost options with transmission cost adders for ISO-NE, NYISO and Ontario to compare against the total real levelized cost determined by Hydro-Quebec for the 300 MW Call for Tenders.

Resource Cost Assessment	Real Levelized Cost of Energy (2022 \$/MWh Cn\$) HQ Discount Rate (2.87%)	Real Levelized Cost of Energy (2022 \$/MWh Cn\$) with Tx NYISO HQ Discount Rate (2.87%)	Real Levelized Cost of Energy (2022 \$/MWh Cn\$) with Tx ISO- NE HQ Discount Rate (2.87%)	Real Levelized Cost of Energy (2022 \$/MWh Cn\$) with Tx Ontario HQ Discount Rate (2.87%)
Wind				
Capital Cost - \$2,000/kW	\$59.85	\$65.91	\$64.01	\$61.10
Capital Cost - \$2,250/kW	\$65.29	\$71.36	\$69.45	\$66.55
Capital Cost - \$2,500/kW	\$70.73	\$76.78	\$74.89	\$71.99

Table 6: Real Levelized Delivered Cost Comparison for Wind Resources

As the data in Table 6 above relative to Table 1 (col 9) illustrates, at a capital cost of wind of \$2,500/kW (US\$), the two wind bids selected via the 300 MW Call for Tenders are slightly higher than the benchmarks and would likely be comparable without the Call for Tender requirements associated with Quebec content and the local community involvement requirement. At alternative capital cost of \$2,250/kW (US\$) and \$2,000/kW (US\$), both wind projects selected are above the benchmarks, with a premium that would likely exceed the Quebec and local community requirements.

Merrimack Energy's overall conclusion based on this analysis is that the bid prices for the two wind resources selected by Hydro-Quebec are generally competitive with benchmark costs in the capital cost case of \$2,500/kW (US\$), based on the expected premium paid by bidders based on Quebec content and local community requirements.

Appendix A: Summary of Northeast US LCOE Calculations

Resource Cost Assessment	Levelized Cost of Energy (\$/MWh US\$)	Levelized Cost of Energy (\$/MWh Cn\$)	Real Levelized Cost of Energy (2022 \$/MWh US\$)	Real Levelized Cost of Energy (2022 \$/MWh Cn\$)
Wind			,	
Capital Cost - \$2,000/kW	\$66.36	\$86.27	\$47.77	\$62.11
Capital Cost - \$2,250/kW	\$72.48	\$94.22	\$52.18	\$67.82
Capital Cost - \$2,500/kW	\$78.59	102.17	\$56.57	\$73.56
New England LCOE	\$73.92	\$96.10	\$52.23	\$69.17
New York LCOE	\$73.92	\$96.10	\$52.23	\$69.17
Solar 17% CF				
Capital Cost - \$1,800/kW	\$112.85	\$146.70	\$87.52	\$113.77
Capital Cost - \$2,000/kW	\$123.32	\$160.31	\$95.62	\$124.29
Capital Cost - \$2,200/kW	\$133.79	\$173.92	\$103.72	\$134.84
Solar 22% CF				
Capital Cost - \$1,800/kW	\$87.20	\$113.36	\$67.62	\$87.91
Capital Cost - \$2,000/kW	\$95.29	\$123.88	\$73.88	\$96.05
Capital Cost - \$2,200/kW	\$103.38	\$134.39	\$80.15	\$104.19
New England LCOE	\$77.90	\$101.27	\$60.43	\$78.54
New York LCOE	\$70.85	\$92.11	\$54.96	\$71.43
Standalone Storage				
Capital Cost - \$1,600/kW	\$119.36	\$155.17	\$99.94	\$129.76
Capital Cost - \$1,900/kW	\$135.56	\$176.23	\$113.51	\$147.55
Capital Cost - \$1,600/kW – LCOE (\$/kW-month)	\$12.34	\$16.05	\$10.33	\$13.43
Capital Cost - \$1,900/kW – LCOE (\$/kW-month)	\$14.02	\$18.22	\$11.74	\$15.27
Solon + Storage				
Solar + Storage 4-hr duration BESS at 10% (\$4/MWh Adder)	\$99.29	\$129.08	\$75.83	\$98.59

4-hr duration BESS at 100% (\$25/MWh Adder)	\$120.29	\$156.38	\$91.87	\$119.44
Biomass				
Capital Cost - \$2,500/kW	\$65.99	\$85.79	\$47.18	\$61.35
Capital Cost - \$5,000/kW	\$97.65	\$126.95	\$69.81	\$90.76
Capital Cost – NREL - \$4,360/kW	\$89.55	\$116.41	\$64.02	\$83.23
Capital Cost -NE - \$5,372/kW	\$102.58	\$133.35	\$73.34	\$95.33
Capital Cost -NY - \$5,389/kW	\$102.36	\$133.07	\$73.19	\$95.15
Hydropower				
Capital Cost - \$2,025/kW	\$36.89	\$47.95	\$26.23	\$34.08
Capital Cost - \$4,244/kW	\$65.60	\$85.27	\$46.62	\$60.62
Capital Cost – NSD4 10+ MW - \$6,269/kW	\$80.85	\$105.10	\$57.47	\$74.71
Capital Cost – NPD2 – Medium - \$5,514/kW	\$131.91	\$171.49	\$93.78	\$121.92
Capital Cost – NPD6 – Medium - \$6,873/kW	\$132.59	\$172.37	\$94.26	\$122.54